![20122017年高考文科数学真题汇编圆锥曲线老师版_第1页](http://file3.renrendoc.com/fileroot_temp3/2022-1/18/a3f8a7c1-be8c-406d-b78b-cc06c15366ef/a3f8a7c1-be8c-406d-b78b-cc06c15366ef1.gif)
![20122017年高考文科数学真题汇编圆锥曲线老师版_第2页](http://file3.renrendoc.com/fileroot_temp3/2022-1/18/a3f8a7c1-be8c-406d-b78b-cc06c15366ef/a3f8a7c1-be8c-406d-b78b-cc06c15366ef2.gif)
![20122017年高考文科数学真题汇编圆锥曲线老师版_第3页](http://file3.renrendoc.com/fileroot_temp3/2022-1/18/a3f8a7c1-be8c-406d-b78b-cc06c15366ef/a3f8a7c1-be8c-406d-b78b-cc06c15366ef3.gif)
![20122017年高考文科数学真题汇编圆锥曲线老师版_第4页](http://file3.renrendoc.com/fileroot_temp3/2022-1/18/a3f8a7c1-be8c-406d-b78b-cc06c15366ef/a3f8a7c1-be8c-406d-b78b-cc06c15366ef4.gif)
![20122017年高考文科数学真题汇编圆锥曲线老师版_第5页](http://file3.renrendoc.com/fileroot_temp3/2022-1/18/a3f8a7c1-be8c-406d-b78b-cc06c15366ef/a3f8a7c1-be8c-406d-b78b-cc06c15366ef5.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、学科教师辅导教案 学员姓名 年 级高三 辅导科目数 学授课老师课时数2h 第 次课授课日期及时段 2018年 月 日 : : 历年高考试题集锦圆锥曲线 1、(2016年四川)抛物线y2=4x的焦点坐标是( D )(A)(0,2) (B) (0,1) (C) (2,0) (D) (1,0)2、(2016年天津)已知双曲线的焦距为,且双曲线的一条渐近线及直线垂直,则双曲线的方程为( A )(A) (B)(C) (D)3、(2016年全国I卷)直线l经过椭圆的一个顶点和一个焦点,若椭圆中心到l的距离为其短轴长的,则该椭圆的离心率为( B )(A)(B)(C)(D)4、(2016年全国II卷)设F为抛
2、物线C:y2=4x的焦点,曲线y=(k>0)及C交于点P,PFx轴,则k=( D )(A) (B)1 (C) (D)25、(2016年全国III卷)已知O为坐标原点,F是椭圆C:的左焦点,A,B分别为C的左,右顶点.P为C上一点,且轴.过点A的直线l及线段交于点M,及y轴交于点E.若直线BM经过OE的中点,则C的离心率为( A )(A)(B)(C)(D)6、(2016年北京)已知双曲线 (a0,b0)的一条渐近线为2x+y=0,一个焦点为( ,0),则a=_;b=_.7、(2016年江苏)在平面直角坐标系xOy中,双曲线的焦距是_. 8、(2016年山东)已知双曲线E:=1(a>0
3、,b>0)矩形ABCD的四个顶点在E上,AB,CD的中点为E的两个焦点,且2|AB|=3|BC|,则E的离心率是_2_9.(2015北京文)已知是双曲线()的一个焦点,则 10.(2015年广东文)已知椭圆()的左焦点为,则( C )A B C D11.(2015年安徽文)下列双曲线中,渐近线方程为的是( A )(A) (B)(C) (D)12、(2016年上海)双曲线的左、右焦点分别为F1、F2,直线l过F2且及双曲线交于A、B两点.(1)若l的倾斜角为 ,是等边三角形,求双曲线的渐近线方程;解析:(1)设由题意,因为是等边三角形,所以,即,解得故双曲线的渐近线方程为13、(2016年
4、四川)已知椭圆E:+=1(ab0)的一个焦点及短轴的两个端点是正三角形的三个顶点,点P(,)在椭圆E上。()求椭圆E的方程。 解:(I)由已知,a=2b.又椭圆过点,故,解得.所以椭圆E的方程是.14、(2016年天津)设椭圆()的右焦点为,右顶点为,已知,其中为原点,为椭圆的离心率.()求椭圆的方程;解析:(1)解:设,由,即,可得,又,所以,因此,所以椭圆的方程为.15、(2016年全国I卷)在直角坐标系中,直线l:y=t(t0)交y轴于点M,交抛物线C:于点P,M关于点P的对称点为N,连结ON并延长交C于点H.(I)求;(II)除H以外,直线MH及C是否有其它公共点?说明理由.【解析】(
5、)由已知可得,又及关于点对称,故 直线的方程为,代入,得:解得:,是的中点,即()直线及曲线除外没有其它公共点理由如下:直线的方程为,即,代入,得,解得,即直线及只有一个公共点,所以除外没有其它公共点16.(2015北京文)已知椭圆,过点且不过点的直线及椭圆交于,两点,直线及直线交于点()求椭圆的离心率;()若垂直于轴,求直线的斜率;试题解析:()椭圆C的标准方程为.所以,.所以椭圆C的离心率.()因为AB过点且垂直于x轴,所以可设,.直线AE的方程为.令,得.所以直线BM的斜率.17.(2015年安徽文)设椭圆E的方程为点O为坐标原点,点A的坐标为,点B的坐标为(0,b),点M在线段AB上,
6、满足直线OM的斜率为。学优高考网(1)求E的离心率e;(2)设点C的坐标为(0,-b),N为线段AC的中点,证明:MNAB。()由题意可知N点的坐标为() MNAB18.(2015年福建文)已知椭圆的右焦点为短轴的一个端点为,直线交椭圆于两点若,点到直线的距离不小于,则椭圆的离心率的取值范围是( A )A B C D119.(2015年新课标2文)已知双曲线过点,且渐近线方程为,则该双曲线的标准方程为 20.(2015年陕西文)已知抛物线的准线经过点,则抛物线焦点坐标为( B )A B C D【解析】试题分析:由抛物线得准线,因为准线经过点,所以,所以抛物线焦点坐标为,故答案选考点:抛物线方程
7、.21.(2015年陕西文科)如图,椭圆经过点,且离心率为.(I)求椭圆的方程;22.(2015年天津文)已知双曲线的一个焦点为,且双曲线的渐近线及圆相切,则双曲线的方程为( D )(A) (B) (C) (D) 23(2013广东文)已知中心在原点的椭圆C的右焦点为,离心率等于,则C的方程是( D )A B C D24(2012沪春招) 已知椭圆则( D ) (A)及顶点相同.(B)及长轴长相同. (C)及短轴长相同.(D)及焦距相等.25.(2012新标) 设是椭圆的左、右焦点,为直线上一点,是底角为的等腰三角形,则的离心率为( C ) 26.(2013新标2文) 设椭圆C:1(a>
8、b>0)的左、右焦点分别为F1、F2,P是C上的点,PF2F1F2,PF1F230°,则C的离心率为(D)A. B. C. D.27.(2013四川文) 从椭圆1(a>b>0)上一点P向x轴作垂线,垂足恰为左焦点F1,A是椭圆及x轴正半轴的交点,B是椭圆及y轴正半轴的交点,且ABOP(O是坐标原点),则该椭圆的离心率是()A. B. C. D.【简解】由题意可设P(c,y0)(c为半焦距),kOP,kAB,由于OPAB,y0,把P代入椭圆方程得1,而2,e.选C.28(2014大纲)已知椭圆C:的左、右焦点为、,离心率为,过的直线交C于A、B两点,若的周长为,则C的
9、方程为( )A B C D【简解】|AB|+|AF1|+|BF1|=|AF2|+|BF2|+|AF1|+|BF1|=4a=4,a=;c=1;b2=2.选A29(2012江西)椭圆(ab0)的左、右顶点分别是A,B,左、右焦点分别是F1,F2。若|AF1|,|F1F2|,|F1B|成等比数列,则此椭圆的离心率为_.【简解】,; ,即,则;故.填.30(2014广东)若实数k满足,则曲线及曲线的( A )A. 焦距相等 B. 实半轴长相等 C. 虚半轴长相等 D. 离心率相等31(2013湖北)已知,则双曲线:及:的( D)A实轴长相等 B虚轴长相等 C焦距相等 D离心率相等32.(2014天津理
10、) 已知双曲线的一条渐近线平行于直线:,双曲线的一个焦点在直线上,则双曲线的方程为(A)(A) (B)(C) (D)33.(2013新标1) 已知双曲线:()的离心率为,则的渐近线方程为(C ). . . .34.(2014新标1文)已知双曲线的离心率为2,则(D )A. 2 B. C. D. 135.(2014新标1文) 已知抛物线C:的焦点为,是C上一点,则( A )A. 1 B. 2 C. 4 D. 836.(2013新标1文) 为坐标原点,为抛物线的焦点,为上一点,若,则的面积为( )(A) (B) (C) (D)【简解】准线x=-,PF=P到准线距,求得xP=3;进而yP=±
11、;2;S=,选C37.(2013新标2文) 设为抛物线的焦点,过且倾斜角为的直线交于,两点,则 (A) (B) (C) (D)【简解】根据抛物线定义|AB|=xA+xB+,将y=(x-)代入,知选C38.(2013新标2文)设抛物线C:y24x的焦点为F,直线l过F且及C交于A,B两点若|AF|3|BF|,则l的方程为()Ayx1或yx1 By(x1)或y(x1)Cy(x1)或y(x1) Dy(x1)或y(x1)【简解】抛物线y24x的焦点坐标为(1,0),准线方程为x1,设A(x1,y1),B(x2,y2),因为|AF|3|BF|,所以x113(x21),所以x13x22.因为|y1|3|y
12、2|,x19x2,所以x13,x2,当x13时,y12,所以此时y1±±2,若y12,则A(3,2),B,此时kAB,此时直线方程为y(x1)若y12,则A(3,2),B,此时kAB,此时直线方程为y(x1)所以l的方程是y(x1)或y(x1),选C.39.(2017新课标1文)已知F是双曲线C:x2-=1的右焦点,P是C上一点,且PF及x轴垂直,点A的坐标是(1,3).则APF的面积为( D )ABCD【答案】D【解析】由得,所以,将代入,得,所以,又A的坐标是(1,3),故APF的面积为,选D.40.(2017新课标1文)设A、B是椭圆C:长轴的两个端点,若C上存在点M
13、满足AMB=120°,则m的取值范围是 ( A )ABCD【答案】A【解析】当,焦点在轴上,要使C上存在点M满足,则,即,得;当,焦点在轴上,要使C上存在点M满足,则,即,得,故m的取值范围为,选A.41、(2017·全国文,5)若a>1,则双曲线y21的离心率的取值范围是()A(,) B(,2) C(1,) D(1,2)3【答案】C【解析】由题意得双曲线的离心率e.e21.a1,01,112,1e.故选C.42(2017·全国文,12)过抛物线C:y24x的焦点F,且斜率为的直线交C于点M(M在x轴上方),l为C的准线,点N在l上且MNl,则M到直线NF的
14、距离为() A. B2 C2 D34【答案】C【解析】抛物线y24x的焦点为F(1,0),准线方程为x1.由直线方程的点斜式可得直线MF的方程为y(x1)联立得方程组解得或点M在x轴的上方,M(3,2)MNl,N(1,2)|NF|4,|MF|MN|3(1)4.MNF是边长为4的等边三角形点M到直线NF的距离为2.故选C.43(2017·全国文,11)已知椭圆C:1(a>b>0)的左、右顶点分别为A1,A2,且以线段A1A2为直径的圆及直线bxay2ab0相切,则椭圆C的离心率为()A B C D5【答案】A【解析】由题意知以A1A2为直径的圆的圆心坐标为(0,0),半径为
15、a.又直线bxay2ab0及圆相切,圆心到直线的距离da,解得ab,e .44(2017·天津文,5)已知双曲线1(a>0,b>0)的右焦点为F,点A在双曲线的渐近线上,OAF是边长为2的等边三角形(O为原点),则双曲线的方程为()A1 B1 Cy21 Dx216【答案】D【解析】根据题意画出草图如图所示.由AOF是边长为2的等边三角形得到AOF60°,c|OF|2.又点A在双曲线的渐近线yx上,tan 60°.又a2b24,a1,b,双曲线的方程为x21.故选D.45(2017·全国文,14)双曲线1(a>0)的一条渐近线方程为yx,
16、则a_.1【答案】5【解析】双曲线的标准方程为1(a0),双曲线的渐近线方程为y±x.又双曲线的一条渐近线方程为yx,a5.46、(2017·北京文,10)若双曲线x21的离心率为,则实数m_.【答案】2【解析】由双曲线的标准方程知a1,b2m,c,故双曲线的离心率e,1m3,m2.47、(2017·全国理,16)已知F是抛物线C:y28x的焦点,M是C上一点,FM的延长线交y轴于点N.若M为FN的中点,则|FN|_.【解析】如图,不妨设点M位于第一象限内,抛物线C的准线交x轴于点A,过点M作准线的垂线,垂足为点B,交y轴于点P,PMOF. 由题意知,F(2,0)
17、,|FO|AO|2.点M为FN的中点,PMOF,|MP|FO|1.又|BP|AO|2,|MB|MP|BP|3.由抛物线的定义知|MF|MB|3,故|FN|2|MF|6.48、(2017新课标1文)设A,B为曲线C:y=上两点,A及B的横坐标之和为4.(1)求直线AB的斜率;(2)设M为曲线C上一点,C在M处的切线及直线AB平行,且AMBM,求直线AB的方程.【解析】(1)设,则 (2)设 ,则C在M处的切线斜率 则 ,又AMBM, 即 又设AB:y=xm代入 得 ,4m820=0m=7故AB:xy=749.(2017年新课标文)设O为坐标原点,动点M在椭圆C:y21上,过M作x轴的垂线,垂足为N,点P满足.(1)求点P的轨迹方程;(2)设点Q在直线x3上,且·1.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 人教版历史七年级下册第18课《统一多民族国家的巩固和发展》听课评课记录
- 小学6年级听评课记录
- 苏科版数学八年级上册听评课记录《6-2一次函数(1)》
- 五年级小数口算练习题
- 华师大版数学八年级下册《菱形的性质》听评课记录2
- 苏教版一年级口算练习题
- 苏教版三年级数学上册口算练习
- 苏教版二年级上册口算练习共7天
- 电动车管理及安全协议书范本
- 五金长期合作供应商合同范本
- GB/T 6417.1-2005金属熔化焊接头缺欠分类及说明
- 2023年湖北成人学位英语考试真题及答案
- 走好群众路线-做好群众工作(黄相怀)课件
- NY∕T 4001-2021 高效氯氟氰菊酯微囊悬浮剂
- 《社会主义市场经济理论(第三版)》第七章社会主义市场经济规则论
- 《腰椎间盘突出》课件
- 汉声数学图画电子版4册含妈妈手册文本不加密可版本-29.统计2500g早教
- simotion轮切解决方案与应用手册
- 柴油发电机运行检查记录表格
- DSC曲线反映PET得结晶度
- 科学素养全稿ppt课件(完整版)
评论
0/150
提交评论