第二章经典单方程计量经济学模型:一元线性回归模型_第1页
第二章经典单方程计量经济学模型:一元线性回归模型_第2页
第二章经典单方程计量经济学模型:一元线性回归模型_第3页
第二章经典单方程计量经济学模型:一元线性回归模型_第4页
第二章经典单方程计量经济学模型:一元线性回归模型_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、第二章 经典单方程计量经济学模型:一元线性回归模型一、内容提要本章介绍了回归分析的基本思想与基本方法。首先,本章从总体回归模型与总体回归函数、样本回归模型与样本回归函数这两组概念开始,建立了回归分析的基本思想。 总体回归函数是对总体变量间关系的定量表述, 由总体回归模型在若干基本假设下得到, 但它只是 建立在理论之上,在现实中只能先从总体中抽取一个样本, 获得样本回归函数, 并用它对总 体回归函数做出统计推断。本章的一个重点是如何获取线性的样本回归函数,主要涉及到普通最小二乘法(OLS)的学习与掌握。同时,也介绍了极大似然估计法(ML )以及矩估计法(MM )。本章的另一个重点是对样本回归函数

2、能否代表总体回归函数进行统计推断,即进行所谓的统计检验。统计检验包括两个方面,一是先检验样本回归函数与样本点的“拟合优度”,第二是检验样本回归函数与总体回归函数的“接近”程度。后者又包括两个层次:第一,检验解释变量对被解释变量是否存在着显著的线性影响关系,通过变量的t检验完成;第二,检验回归函数与总体回归函数的“接近”程度,通过参数估计值的“区间检验”完成。本章还有三方面的内容不容忽视。其一,若干基本假设。样本回归函数参数的估计以 及对参数估计量的统计性质的分析以及所进行的统计推断都是建立在这些基本假设之上的。 其二,参数估计量统计性质的分析,包括小样本性质与大样本性质,尤其是无偏性、有效性与

3、一致性构成了对样本估计量优劣的最主要的衡量准则。Goss-markov定理表明OLS估计量是最佳线性无偏估计量。其三,运用样本回归函数进行预测,包括被解释变量条件均值与个值的预测,以及预测置信区间的计算及其变化特征。二、典型例题分析例1、令kids表示一名妇女生育孩子的数目,educ表示该妇女接受过教育的年数。生育率对教育年数的简单回归模型为kids = °educ -(1) 随机扰动项包含什么样的因素?它们可能与教育水平相关吗?(2) 上述简单回归分析能够揭示教育对生育率在其他条件不变下的影响吗?请解释。 解答:(1) 收入、年龄、家庭状况、政府的相关政策等也是影响生育率的重要的因

4、素,在上述简单回归模型中,它们被包含在了随机扰动项之中。有些因素可能与教育水平相关,如收入水平与教育水平往往呈正相关、年龄大小与教育水平呈负相关等。(2) 当归结在随机扰动项中的重要影响因素与模型中的教育水平educ相关时,上述回归模型不能够揭示教育对生育率在其他条件不变下的影响,因为这时出现解释变量与随机扰动项相关的情形,基本假设 4不满足。例2已知回归模型 E * dN,式中E为某类公司一名新员工的起始薪金(元),N为所受教育水平(年)。随机扰动项J的分布未知,其他所有假设都满足。(1) 从直观及经济角度解释 :和1。(2) OLS估计量:?和?满足线性性、无偏性及有效性吗?简单陈述理由。

5、(3) 对参数的假设检验还能进行吗?简单陈述理由。解答:(1) 壽N为接受过N年教育的员工的总体平均起始薪金。当N为零时,平均薪金为:,因此表示没有接受过教育员工的平均起始薪金。一:是每单位N变化所引起的E的变化,即表示每多接受一年学校教育所对应的薪金增加值。(2) OLS估计量:?和仍?满足线性性、无偏性及有效性,因为这些性质的的成立无需 随机扰动项的正态分布假设。(3) 如果 人的分布未知,则所有的假设检验都是无效的。因为t检验与F检验是建立 在的正态分布假设之上的。例3、在例2中,如果被解释变量新员工起始薪金的计量单位由元改为 100元,估计的 截距项与斜率项有无变化?如果解释变量所受教

6、育水平的度量单位由年改为月, 估计的截距 项与斜率项有无变化?解答:首先考察被解释变量度量单位变化的情形。以E*表示以百元为度量单位的薪金,则E =E* 100 _ 二 N 由此有如下新模型E* =(: /100) C' /100)N/100)这里:*=: /100 , 1*二/100。所以新的回归系数将为原始模型回归系数的1/100。再考虑解释变量度量单位变化的情形。设N*为用月份表示的新员工受教育的时间长度,则N*=12N,于是E = : N _ :- (N * /12) ' 11或Em ';.(' /12)N * i可见,估计的截距项不变,而斜率项将为原回

7、归系数的1/12。例4 .对于人均存款与人均收入之间的关系式St = lYt t使用美国36年的年度数据得如下估计模型,括号内为标准差:§ =384.105 +0.067Yt(151.105)(0.011)R2= 0.538:? =1 9.0 2 3(1) 1的经济解释是什么?(2) 和的符号是什么?为什么?实际的符号与你的直觉一致吗?如果有冲突的话,你可以给出可能的原因吗?(3) 对于拟合优度你有什么看法吗?(4) 检验是否每一个回归系数都与零显著不同(在1%水平下)。同时对零假设和备择假设、检验统计值、其分布和自由度以及拒绝零假设的标准进行陈述。你的结论是什么?解答:(1) 为收

8、入的边际储蓄倾向,表示人均收入每增加1美元时人均储蓄的预期平均变 化量。(2) 由于收入为零时,家庭仍会有支出,可预期零收入时的平均储蓄为负,因此符号应为负。储蓄是收入的一部分,且会随着收入的增加而增加,因此预期一:的符号为正。实际的回归式中,1的符号为正,与预期的一致。但截距项为负,与预期不符。这可能与由于模型的错误设定形造成的。如家庭的人口数可能影响家庭的储蓄形为,省略该变量将对截距项的估计产生影响;另一种可能就是线性设定可能不正确。(3) 拟合优度刻画解释变量对被解释变量变化的解释能力。模型中53.8%的拟合优度,表明收入的变化可以解释储蓄中53.8 %的变动。(4) 检验单个参数采用

9、t检验,零假设为参数为零,备择假设为参数不为零。双变量 情形下在零假设下t分布的自由度为n-2=36-2=34。由t分布表知,双侧1%下的临界值位于2.750与2.704之间。斜率项计算的t值为0.067/0.01仁6.09,截距项计算的t值为384.105/151.105=2.54。可见斜率项计算的t值大于临界值,截距项小于临界值,因此拒绝斜率项为零的假设,但不拒绝截距项为零的假设。三、教材中部分习题2.1、为什么计量经济学模型的理论方程中必须包含随机干扰项?计量经济模型考察的是具有因果关系的随机变量间的具体联系方式。由于是对基变量,意味着影响被解释变量的因素是复杂的除了解释变量的影响外,还

10、有其他无法在模型中独立列出的各种因素的影响。这样,模型中就必须使用一个随机干扰项变量来代表所有这些在模型中 无法独立表示出来的影响因素。 (或见第一章习题)2-2.下列方程哪些是正确的?哪些是错误的?为什么? yt - - xtt =1,2,nyt=x-.-tt=1,2,,n二:人Jt=1,2,nyt= :: xt4t=1,2,nyt- :- xtt =12,nyt二:xtt =12,nyt-冷t=1,2,,nyt= :: xt_tt=1,2, n其中带“人”者表示“估计值”。答:错;正;错;错;错;正,正,错。2.3、线性回归模型有哪些基本假设?违背基本假设的计量经济学模型是否就不可估计?答

11、:线性回归模型的基本假设(实际是针对普通最小二乘法的基本假设)有两大类:一类是关于解释变量的,解释变量是确定性变量,而且如果是随机变量则解释变量与随机干扰项之间互不相关;一类是关于随即干扰项的,随机误差项具有0均值和同方差;随机误差项 在不同样本点之间是独立的,不存在序列相关;随机误差项与解释变量之间不相关;随机误差项服从0均值、同方差的正态分布。违背基本假设的计量经济学模型还是可以估计的,只是不能使用普通最小二乘法进行估计。2.4、线性回归模型yt = :Xt 叫 t =1,2,,nn1的0均值假设是否可以表示为't =0 ?为什么?n 7(答:严格来说,随机干扰项的0均值假设是关于

12、 X的条件期望为 0,线性回归模型:n1yt = -xt t中的0均值假设e(u2)=0不可以表示为:t =0,因为前者表示取n y完所的可能的样本组合后的平均状态,而后者只是一个样本的平均值。)二者是两个完全不同的概念。2.5、 假设已经得到Y = X关系的最小二乘估计,试回答:假设决定把X变量的计量单位扩大 10倍,这样对远回归的斜率和截距有何影响?如果 Y变量的单位扩大10倍,又会怎样?记X为原变量X计量单位扩大10倍的变量,XX/10,。于是答:丫 “0二 一:0 ;10X0 10.所以,解释变量的单位扩大10倍,回归的截距不变,斜率项将为原系数的10倍。其他问题方法相同。如果Y变量的

13、计量单位扩大 10倍,斜率和截距系数都将为原始模型回归系数的1/102.10、下面数据是对 X和Y的观察值得到的。刀Yi=1110; 刀Xi=1680 ; 刀XiYi=204200刀Xi =315400 ; 刀 Yi =133300 假定满足所有的古典线性回归模型的假设,要求:(1) b1 和 b2 ?(2) b1和b2的标准差?(3) r2?(4) 对B1、B2分别建立95%的置信区间?禾U用置信区间法,你可以接受零假设:B2=0吗?Xi-、Yi(解:X- =168, Y- =111nn二 Z (Xj X)(Yj 丫)=送(xm YXj 丫汉 + XY)= 204200-1680 111 -

14、168 1110 10 168 111=17720又 ' (Xi -X)2 八(Xi2 -2XiX X2)2 2 2二、Xi -210X210X2 = 315400 -10 168 168二331601772033160= 0.5344' (Xi X)(Y -Y)' (Xi -X)2-1 二Y - jX =111 -0.5344 168 = 21.22O2 ' e2x (Yi -Y?)2' £-2yY? Y2)?=n21028Y? =21.22 0.5344Xi.' (Y2 -2YiY? Y?2) = ' (Y2 -2 21.2

15、2Y -2 0.5344XiY:;Xj2 2 /Xi)= 133300-2 21.22 1110-2 0.5344 204200 10 21.22 21.220.5344 0.5344 315400 2 21.22 0.5344 1680-620.81.;?2 = ' e: /n620.81= 77.60Var( J2 2Xi -2 n' (Xi -X)77.60 31540010 33160二 73.81 ,se( J = 73.81 =8.5913Var( ' 2)cr2右 o.。023, u。023 "0484r2、(Yi -Y)27#'、 e-

16、 =620.81,又 ' (¥ -Y)2 =133300 -123210 =10090620.8110090= 0.9385 p(t乞2.306) =95%,自由度为821 22 P -2.3061乞2.306,解得:1.4085乞三41.0315为的95%的置信区间。8.5913同理,.-2.306 乞 0.5344 一 < 2.306 ,解得:0.4227 乞< 0.646为匕的 95% 的置 0.0484信区间。由于 匕=0不在12的置信区间内,故拒绝零假设:匕=0。#2-11.表中列出中国 佃78-2000年的财政收入 Y和国内生产总值 GDP的统计资料。要求:1. 作出散点图(略)建立 Y随X变化的一元线性回归方程,并解释斜率的经济意义;2. 对所建立的回归方程进行检验;3. 若2001年中国GDP为105709亿元,求财政收入的预测值及预测区间。0.1198*GDP2(22.72),R =0.9609在1978-2000年间中国国内生产总值每增加一亿元,财政收入 平均增加556.65答:1.t值:(2.52)斜率的经济意义是:8#0.1198 亿元。2在5%的显著性水平下,自由度为23-2=21的t分布临界值为2.08。因此从参数的t检验值 看,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论