![人教版七级数学(下册)第七章三角形教案_第1页](http://file3.renrendoc.com/fileroot_temp3/2022-1/1/a526854e-64b9-4f6e-a422-32d74b1c4c5b/a526854e-64b9-4f6e-a422-32d74b1c4c5b1.gif)
![人教版七级数学(下册)第七章三角形教案_第2页](http://file3.renrendoc.com/fileroot_temp3/2022-1/1/a526854e-64b9-4f6e-a422-32d74b1c4c5b/a526854e-64b9-4f6e-a422-32d74b1c4c5b2.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、1 / 28第七章 三角形教材内容本章主要内容有三角形的有关线段、角,多边形及内角和,镶嵌等。 三角形的高、中线和角平分线是三角形中的主要线段,与三角形有关的角有内角、外 角。教材通过实验让学生了解三角形的稳定性,在知道三角形的内角和等于1800的基础上,进行推理论证,从而得出三角形外角的性质。接着由推广三角形的有关概念,介绍了 多边形的有关概念,利用三角形的有关性质研究了多边形的内角和、外角和公式。这些知 识加深了学生对三角形的认识,既是学习特殊三角形的基础,也是研究其它图形的基础。 最后结合实例研究了镶嵌的有关问题,体现了多边形内角和公式在实际生活中的应用.教案目标知识与技能1、理解三角形
2、及有关概念,会画任意三角形的高、中线、角平分线;2、了解三角形的稳定性,理解三角形两边的和大于第三边,会根据三条线段的长度判断它们能否构成三 角形;3、会证明三角形内角和等于1800,了解三角形外角的性质。4、了解多边形的有关概念,会运用多边形的内角和与外角和公式解决问题。5、理解平面镶嵌,知道任意一个三角形、四边形或正六边形可以镶嵌平面,并能运用它们进行简单的平面镶嵌设计。过程与方法1、在观察、操作、推理、归纳等探索过程中,发展学生的合情推理能力,逐步养成数 学推理的习惯;2、在灵活运用知识解决有关问题的过程中,体验并掌握探索、归纳图形性 质的推理方法,进一步培说理和进行简单推理的能力。情感
3、、态度与价值观1、体会数学与现实生活的联系,增强克服困难的勇气和信心;2、会应用数学知识解决一些简单的实际问题,增强应用意识;3、使学生进一步形成数学来源于实践,反过来又服务于实践的辩证唯物主义观点。重点难点三角形三边关系、内角和,多边形的外角和与内角和公式,镶嵌是重点;三角形内角 和等于1800的证明,根据三条线段的长度判断它们能否构成三角形及简单的平面镶嵌设计 是难点。课时分配7.1与三角形有关的线段 .2课时7.2与三角形有关的角 .2课时7.3多边形及其内角和 .2课时7.4课题学习 镶嵌.1课时本章小结.2课时备课时间授课时间课型课时7.1.1 三角形的边教案目标1、了解三角形的意义
4、,认识三角形的边、内角、顶点,能用符号语言表示 三角形;2、理解三角2 / 28形三边不等的关系,会判断三条线段能否构成一个三角形,并能运用它解决有关的问题重点难点三角形的有关概念和符号表示,三角形三边间的不等关系是重点;用三角 形三边不等关系判定三条线段可否组成三角形是难点。教案过程一、情景导入三角形是一种最常见的几何图形,投影1-6如古埃及金字塔,香港中银大厦,交通标那么什么叫做三角形呢?二、三角形及有关概念不在一条直线上的三条线段首尾顺次相接组成的图形叫做三角形。注意:三条线段必须不在一条直线上,首尾顺次相接。所组成的角叫做三角形的 内角,简称角,相邻两边的公共端点是三角形的顶点。三角形
5、ABC用符号表示为ABC。三角形ABC的顶点C所对的边AB可用c表示,顶 点B所对的边AC可用b表示,顶点A所对的边BC可用a表示三、三角形三边的不等关系探究:投影7任意画一个ABC,假设有一只小虫要从B点出发,沿三角形的边爬到C,它有几种路线可以选择?各条路线的长一样吗?为什么?有两条路线:(1)从BC,(2)从BTAC;不一样,AB+ACBC;因为两 点之间线段最短。3 / 28同样地有AC+BCABAB+BCAC由式子我们可以知道什么?三角形的任意两边之和大于第三边.四、三角形的分类我们知道,三角形按角可分为锐角三角形、钝角三角形、直角三角形,我们把锐角三 角形、钝角三角形统称为斜三角形
6、。按角分类:三角形直角三角形斜三角形锐角三角形钝角三角形那么三角形按边如何进行分类呢?请你按“有几条边相等”将三角形分类。三边都相等的三角形叫做 等边三角形;有两条边相等的三角形叫做等腰三角形;三边都不相等的三角形叫做不等边三角形。顶角底边显然,等边三角形是特殊的等腰三角形。按边分类:三角形不等边三角形等腰三角形底和腰不等的等腰三角形等边三角形五、例题例 用一条长为18cm的细绳围成一个等腰三角形。(1)如果腰长是底边的2倍,那么各边的长是多少? (2)能围成有一边长为4cm的等腰三角形吗?为什么?分析:(1)等腰三角形三边的长是多少?若设底边长为xcm,则腰长是多少?(2)“边长为4cm”是
7、什么意思?解:(1)设底边长为xcm,则腰长2 xcm。x+2x+2x=18解得x=3.6所以,三边长分别为3.6cm,7.2cm,7.2cm.(2)如果长为4cm的边为底边,设腰长为xcm,则4+2x=18解得x=7如果长为4cm的边为腰,设底边长为xcm,则4 / 282X4+x=18解得x=105 / 28因为4+4V10,出现两边的和小于第三边的情况,所以不能围成腰长是4 cm的等腰三角形。由以上讨论可知,可以围成底边长是4 cm的等腰三角形。五、 课堂练习课本65面练习1、2题。六、 课堂小结1、三角形及有关概念;2、三角形的分类;3、三角形三边的不等关系及应用。作业:备课时间授课时
8、间课型课时7.1.2三角形的高、中线与角平分线教案目标1、经历画图的过程,认识三角形的高、中线与角平分线;2、会画三角形的高、中线与角平分线;3、了解三角形的三条高所在的直线,三条中线,三条角平分线分别交于一点重点难点 三角形的高、中线与角平分线是重点;三角形的角平分线与角的平分线的区别,画钝角三角形的高是难点教案过程一、 导入新课我们已经知道什么是三角形,也学过三角形的高。三角形的主要线段除高外,还有中线和 角平分线值得我们研究。二、 三角形的高请你在图中画出厶ABC的一条高并说说你画法。从厶ABC的顶点A向它所对的边BC所在的直线画垂线,垂足为D,所得线段AD叫 做厶ABC的边BC上的高,
9、表示为AD丄BC于点D。注意:高与垂线不同,高是线段,垂线是直线。请你再画出这个三角形AB、AC边上的高,看看有什么发现?三角形的三条高相交于一点。如果ABC是直角三角形、钝角三角形,上面的结论还成立吗?现在我们来画钝角三角形三边上的高,如图。6 / 28显然,上面的结论成立。请你画一个直角三角形,再画出它三边上的高。上面的结论还成立。三、三角形的中线如图,我们把连结ABC的顶点A和它的对边BC的中点D,所得线段AD叫做ABC的边BC上的中线,表示为BD=DC或BD=DC=1/2BC或2BD=2DC=BC.请你在图中画出厶ABC的另两条边上的中线,看看有什么发现?三角的三条中线相交于一点。如果
10、三角形是直角三角形、钝角三角形,上面的结论还成立吗?请画图回答。上面的结论还成立。四、三角形的角平分线如图,画/A的平分线AD,交/A所对的边BC于点D,所得线段AD叫做ABC的 角平分线,表示为/BAD=/CAD或/BAD=/CAD=1/2/BAC或2/BAD=2/CAD=ZBAC。思考:三角形的角平分线与角的平分线是一样的吗?三角形的角平分线是线段,而角的平分线是射线,是不一样的。请你在图中再画出另两个角的平分线,看看有什么发现?三角形三个角的平分线相交于一点。如果三角形是直角三角形、钝角三角形,上面的结论还成立吗?请画图回答。 上面的结论还成立。想一想:三角形的三条高、三条中线、三条角平
11、分线的交点有什么不同?三角形的三条中线的交点、三条角平分线的交点在三角形的内部,而锐三角形的三条 高的交点在三角形的内部,直角三角形三条高的交战在角直角顶点,钝角三角形的三条高 的交点在三角形的外部。五、 课堂练习课本66面练习1、2题。六、 课堂小结1、 三角形的高、中线、角平分线的概念和画法。2、 三角形的三条高、三条中线、三条角平分线及交点的位置规律。作业:AC7 / 28备课时间授课时间课型课时7.1.3 三角形的稳定性教案目标1、知道三角形具有稳定性,四边形没有稳定性;2、了解三角形的稳定性在生产、生活中的应用。重点难点三角形稳定性及应用。教案过程一、情景导入盖房子时,在窗框未安装之
12、前,木工师傅常常先在窗框上斜钉一根木条,为什么要这样做 呢?二、三角形的稳定性实验1、把三根木条用钉子钉成一个三角形木架,然后扭动它,它的形状会改变吗?2、把四根木条用钉子钉成一个四边形木架,然后扭动它,它的形状会改变吗? 会改变。3、在四边形的木架上再钉一根木条,将它的一对顶点连接起来,然后扭动它,它的形 状会改变吗?不会改变。)8 / 28不会改变。从上面的实验中,你能得出什么结论?三角形具有稳定性,而四边形不具有稳定性。三、三角形稳定性和四边形不稳定的应用三角形具有稳定性固然好,四边形不具有稳定性也未必不好,它们在生产和生活中都 有广泛的应用。如:钢架桥、屋顶钢架和起重机都是利用三角形的
13、稳定性,活动挂架则是利用四边形的 不稳定性。你还能举出一些例子吗? 四、课堂练习1、下列图形中具有稳定性的是()A正方形B长方形C直角三角形D平行四边形2、要使下列木架稳定各至少需要多少根木棍?3、课本68面练习。作业:耶顶丽架9 / 28备课时间授课时间课型课时721 三角形的内角教案目标掌握三角形内角和定理。重点难点三角形内角和定理是重点;三角形内角和定理的证明是难点。教案过程一、导入新课我们在小学就知道三角形内角和等于180,这个结论是通过实验得到的,这个命题是不是真命题还需要证明,怎样证明呢?二、三角形内角和的证明回顾我们小学做过的实验,你是怎样操作的?把一个三角形的两个角剪下拼在第三
14、个角的顶点处,用量角器量出/BCD的度数,可得到/A+ZB+ZACB=18。投影1图1想一想,还可以怎样拼?剪下ZA,按图(2)拼在一起,可得到ZA+ZB+ZACB=18。图2把/B和/C剪下按图(3)拼在一起,可得到ZA+ZB+ZACB=180。AAC D10 / 28如果把上面移动的角在图上进行转移,由图1你能想到证明三角形内角和等于1800的方法吗?已知ABC,求证:/A+ZB+ZC=18(f。证明一过点C作CM/ AB,则ZA=ZACMZB=ZDCM又ZACB+ZACM-ZDCM=180ZA+ZB+ZACB=180。即:三角形的内角和等于1800。由图2、图3你又能想到什么证明方法?请
15、说说证明过程。三、例题例如图,C岛在A岛的北偏东50方向,B岛在A岛的北偏东80方向,C岛在B岛的 北偏西400方向,从C岛看A、B两岛的视角ZACB是多少度?分析:怎样能求出ZACB的度数?根据三角形内角和定理,只需求出ZCAB和ZCBA的度数即可。ZCAB等于多少度?怎样求ZCBA的度数?解:ZCBA玄BAD-ZCAD=8b500=300/ AD/ BE / BAD+Z ABE=180 ZABE=180-ZBAD=18(5-800=1000 ZABCZABE-ZEBC=10&400=600 ZACB=18&ZABC-ZCAB=18&600-300=900答: 从C岛
16、看AB两岛的视角ZACB=180是900。四、课堂练习课本74面1、2题。作业:11 / 28备课时间授课时间课型课时第七章复习一(7.1-721)一、双基回顾1、三角形:由的三条直线所组成的图形,叫做三角形。1图中有个三角形,用符号表示为。2、三角形的分类:(1)按角分类:三角形I :(2)按边分类:三角形I22三角形中最大的角是700,那么这个三角形是三角形。3、三角形三角的关系:三角形三个内角的和是。4、三角形的三边关系:三角形的两边之和第三边,两边之差第三边。3一个三角形的两边长分别是3和8,则第三边的范围是.5、三角形的高、中线、角平分线从三角形的向它的作垂线,顶点和垂足之间的线段叫
17、做三角形的高注意:三角形的高与垂线不同;三角形的高可能在三角形内部,可能在三角形的边 上,可能在三角形的外部。12 / 28在三角形中,连接与它的线段,叫做三角形的 中线在三角形中,一个内角的角平分线与它的对边相交,与之间的线段,叫做三角形的 角平分线。注意:三角形的角平分线与角的平分线不同4如图,以AE为高的三角形是6、三角形的三条高所在的直线相交于一点。这点可能在三角形的,可能在三角形的, 可能在三角形的。三角形的三条中线相交于一点。这点在三角形的三角形的三条角平分线相交于一点。这点在三角形的。5如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是A.锐角三角形B.直角三角形
18、C.钝角三角形D.锐角三角形7、三角形的稳定性:具有稳定性,具有不稳定性6有些窗户是可以向外推开的,当我们把窗户推开后,就顺手把风钩勾上,为什 么这样做呢?我们的校门是铁栅栏,为什么既能拉开,又能推拢去呢?二、例题导引例1两根木棒长分别为3厘M和 6厘M要截取其中一根木棒将它钉成一个三角形,如果要求三边长为整数,那么截取的情况有几种?例2如图,已知AD AE分别是ABC勺高和中线,AB=6厘M, AC=81M BC=10厘M,/CAB=90,试求(1)AD勺长;(2) ABE勺面积;(3) ACE与 ABE勺周长的差。例3如图,BE平分/ABC,CDF分/ACB/A=50,求/BOC勺度数。1
19、3 / 28三、练习升华 夯实基础1、 有下列长度的三条线段,能组成三角形的是()A.1、2、3B.1、2、4C.2、3、4D.2、3、62、如图,工人师傅把新做好的门框上方钉两根木条后存放起来,这是防止,根据是4、如图,AB丄BD于B, DC丄AC于C,AC与BD交于点E,那么ADE勺边DEh的高为,AE上的高为5、 下列说法正确的是A、直角三角形只有一条高B、三角形的三条中线相交于一点C三角形的三条高相交于一点D、三角形的角平分线是射线6、 如果三角形的三个内角的度数比是2:3:4,则它是()A.锐角三角形B.钝角三角形C.直角三角形D.钝角或直角三角形7、 现有两根木棒,它们的长度分别为
20、20cm和30cm,若不改变木棒的长度,要钉成一个 三角形木架,应在下列四根木棒中选取的木棒A.IOcm B.20cm C.50cm D.60cm8、 在厶AB(中,AB=AC,AD是中线,ABC勺周长为34cm,ABD勺周长为30cm,求AD勺长.9、 在厶ABC中,高CE,角平分线BD交于点O,/ECB=50 ,求/BOC的度数.能力提高10、 在厶ABC中,若/A+ZB=ZC,则此三角形为 _三角形.11、任何一个三角形的三个角中至少有A、一个锐角B、两个锐角C、一个直角D、一个钝角12、 已知等腰三角形的两边长分别为3和6,则它的周长为A.13B.15 C. 14 D. 13或1513
21、、 若等腰三角形的腰长为6,则它的底边长a的取值范围是 _ 。若等腰三角形的底边长为4,则它的腰长b的取值范围是 _.14、在厶ABC中,AD是BC上的中线,且 &ACD=12,SABC=.DC3、图中共有个三角形。D14 / 2815、在厶ABC中,AB=AC, AC边上的中线BD把厶ABC的周长分成15和6两部分,求这个三角形的腰长及底边长。16、如图,ABC中,AD、AE分别是ABC的高和角平分线, /C=600,/B=280,求/DAE的度数。探究创新17、如图,线段AB、CD相交于点0,能否确定AB CD与AD BC的大小,并加以说明.B备课时间授课时间课型课时7.2.2 三
22、角形的外角教案目标1、理解三角形的外角;2、掌握三角形外角的性质,能利用三角形外角的性质解决问题。重点难点三角形的外角和三角形外角的性质是重点;理解三角形的外角是难点。教案过程一、导入新课投影1如图,ABC的三个内角是什么?它们有什么关系?是/A、/B、/C,它们的和是180。若延长BC至D,则/ACD是什么角?这个角与厶ABC的三个内角有什么关系?二、 三角形外角的概念/ACD叫做ABC的外角。也就是,三角形一边与另一边的延长线组成的角,叫做三角 形的外角。想一想,三角形的外角共有几个?共有六个。注意:每个顶点处有两个外角,它们是对顶角。研究与三角形外角有关的问题时,通常每个顶点处取一个外角
23、三、 三角形外角的性质容易知道,三角形的外角/ACD与相邻的内角/ACB是邻补角,那与另外两个角有C15 / 28怎样的数量关系呢?投影2如图,这是我们证明三角形内角和定理时画的辅助线,你能就此图说明/ACD与/A、/B的关系吗?/ CE/ AB,/A=/1,/B=/2又/ACD=/1 +Z2/ACD=/A+/B你能用文字语言叙述这个结论吗?三角形的一个外角等于与它不相邻的两个内角之和。 由加数与和的关系你还能知道什么?三角形的一个外角大于与它不相邻的任何一个内角。即ACD A,. ACD B。四、例题投影3例如图,/1、/2、/3是三角形ABC的三个外角,它们的和是多少?分析:/1与/BAC
24、、/2与/ABC、/3与/ACB有什么关系?/BAC、ABC、/ACB有什么关系?解:T/1 +/BAC=180,/2+/ABC=180,/3+/ACB=180, /1 +/BAC+/2+/ABC+/3+/ACB=540又/BAC+/ABC+/ACB=180/1 +/2+/3=360。你能用语言叙述本例的结论吗? 三角形外角的和等于360。五、 课堂练习课本75面练习;六、 课堂小结1、什么是三角形外角?2、三角形的外角有哪些性质?作业:16 / 28备课时间授课时间课型课时教案目标1、了解多边形及有关概念,理解正多边形的概念.2、区别凸多边形与凹多边形.重点难点多边形及有关概念、正多边形的概
25、念是重点;区别凸多边形与凹多边形是 难点。教案过程一、情景导入投影1看下面的图片,你能从中找出由一些线段围成的图形吗?二、多边形及有关概念这些图形有什么特点? 由几条线段组成;它们不在同一条直线上;首尾顺次相接.这种在平面内,由一些不在同一条直线上的线段首尾顺次相接组成的图形叫做多边形。多边形按组成它的线段的条数分成三角形、四边形、五边形、n边形。这就是说,一个多边形由几条线段组成,就叫做几边形,三角形是最简单的多边形。17 / 28与三角形类似地,多边形相邻两边组成的角叫做多边形的内角,如图中的/A、/B、/C、/D、/E。多边形的边与它的邻边的延长线组成的角叫做多边形的外角.如图中的/1是
26、五边形ABCDE的一个外角。投影2连接多边形的不相邻的两个顶点的线段,叫做多边形的对角线.四边形有几条对角线?五边形有几条对角线?画图看看。你能猜想n边形有多少条对角线吗?说说你的想法。n边形有1/2n(n3)条对角线。因为从n边形的一个顶点可以引n3条对角线,n个顶点共引n(n3)条对角线,又由于连接任意两个顶点的两条对角线是相同的,所 以,n边形有1/2n(n3)条对角线。三、凸多边形和凹多边形投影3如图,下面的两个多边形有什么不同?在图(1)中,画出四边形ABCD的任何一条边所在的直线,整个图形都在这条直线的同一侧,这样的四边形叫做凸四边形,这样的多边形称为凸多边形;而图(2)就不满足上
27、述凸多边形的特征,因为我们画BD所在直线,整个多边形不都在这条直线的同一侧,我们称它为凹多边形。注意:今后我们讨论的多边形指的都是凸多边形.四、正多边形的概念我们知道,等边三角形、正方形的各个角都相等,各条边都相等,像这样各个角都相 等,各条边都相等的多边形叫做 正多边形。五、课堂练习课本81面练习1。投影4下面是正多边形的一些例子。18 / 282、有五个人在告别的时候相互各握了一次手,他们共握了多少次手?你能找到一个几何模型来说明吗?六、课堂小结1、多边形及有关概念。2、 区别凸多边形和凹多边形。3、 正多边形的概念。4、n边形对角线有1/2n(n3)条。作业:备课时间授课时间课型课时7.
28、 3. 2 多边形的内角和教案目标1、了解多边形的内角、外角等概念;2、能通过不同方法探索多边形的内角和与外角和公式,并会应用它们进行有关计算.重点难点多边形的内角和与多边形的外角和公式是重点;多边形的内角和定理的推 导是难点。教案过程一、 复习导入我们已经证明了三角形的内角和为180,在小学我们用量角器量过四边形的内角的度数,知道四边形内角的和为360,现在你能利用三角形的内角和定理证明吗?二、 多边形的内角和投影1如图,从四边形的一个顶点出发可以引几条对角线?它们将四边形分成几 个三角形?那么四边形的内角和等于多少度?宀D19 / 28可以引一条对角线;它将四边形分成两个三角形;因此,四边
29、形的内角和=ABD的内角和+BDO的内角和=2X180=360。类似地,你能知道五边形、六边形n边形的内角和是多少度吗?投影2观察下面的图形,填空:从五边形一个顶点出发可以引对角线,它们将五边形分成三角形,五边形的内角和等 于;从六边形一个顶点出发可以引对角线,它们将六边形分成三角形,六边形的内角和等 于;投影3从n边形一个顶点出发,可以引对角线,它们将n边形分成三角形,n边形的内角和等于。n边形的内角和等于(n2)180 .从上面的讨论我们知道,求n边形的内角和可以将n边形分成若干个三角形来求。现在以五边形为例,你还有其它的分法吗?分法一 投影3如图1,在五边形ABCDE内任取一点O,连结O
30、A OB OG OD个三角形。五边形的内角和为(51)X180180 = (52)X180如果把五边形换成n边形,用同样的方法可以得到n边形内角和=(n2)x180.三、例题投影6例1如果一个四边形的一组对角互补,那么另一组对角有什么关系?如图,已知四边形ABGD中,ZA+ZG=180,求/B与/D的关系.OE则得五个三角形。五边形的内角和为5X180一2X180 = (52)X180=540。分法投影4如图2,在边AB上取一点O,连OE OD OG则可以(5-1)DG20 / 28分析:/A、/B/C、/D有什么关系?解:T/A+/B+/C+/D=(42)X180=360又/A+/C=180
31、/B+/D= 360 (/A+/C)=180这就是说,如果四边形一组对角互补,那么另一组对角也互补.投影7例2如图,在六边形的每个顶点处各取一个外角,这些外角的和叫做六边形的外角和.六边形的外角和等于多少?如图,已知/1,/2,/3,/4,/5,/6分别为六边形ABCDEF的外角,求/1+/2+/3+/4+/5+/6的值.分析:多边形的一个外角同与它相邻的内角有什么关系?六边形的内角和是多少度?解:T/1 +/BAF=180/2+/ABC=180/3+/BAD=180/4+/CDE=180/5+/DEF=180/6+/EFA=180/1 +/BAF+Z 2+/ABC+Z 3+/BAD+Z 4+
32、/CDE+/5+/DEF+Z 6+/EFA=6X 180 又/1 +/2+/3+/4+/5+/6=4X180 /BAF+/ABC+Z BAD/CDE/DEF+Z EFA=6X 180-4X180=360这就是说,六边形形的外角和为360。如果把六边形换成n边形可以得到同样的结果:n边形的外角和等于360。对此,我们也可以这样来理解。投影8如图,从多边形的一个顶点A出发,沿多边形各边走过各顶点,再回到A点,然后转向出发时的方向,在行程中所转的各个角的和就是多边形的外角和,由于走了一周,所得的各个角的和等于一个周角,所以多边形的外 角和等于360.21 / 28四、 课堂练习课本83-84面1、2
33、、3题。五、 课堂小结n边形的内角和是多少度?n边形的外角和是多少度?作业:备课时间授课时间课型课时22 / 287. 4 课题学习:镶嵌教案目标1、知道能单独进行平面镶嵌的只有三角形、四边形或正六边形; 2、了解平面镶嵌的条件,能用多边形进行简单的镶嵌设计。重点难点平面镶嵌的条件和简单的镶嵌设计是重点;用两种或三种多边形进行平面 镶嵌是难点。教案过程一、情景导入回想一下,你家屋内铺设的地板是什么图形?街道两边的便道是用什么形状的砖铺设 的?为什么这样的砖能铺成无缝隙的地面呢?二、平面镶嵌及条件下面的图形是由一些地板砖铺成的,看看它们有什么特点?投影1都是一些多边形;相互不重叠;把一部分平面完
34、全覆盖。用一些不重叠摆放的多边形把平面的一部分完全覆盖.,通常把这类问题叫做 平面镶嵌 (或用多边形覆盖平面)的问题怎样的多边形才能进行平面镶嵌呢?任意剪一些形状、大小相同的三角形纸板,拼一拼,看它们能否镶嵌成平面图案。投影2能镶嵌成平面图案。任意剪一些形状、大小相同的四边形纸板,拼一拼,看它们能否镶嵌成平面图案。投任意剪一些形状、大小相同的五边形纸板,拼一拼,看它们能否镶嵌成平面图案。投23 / 28影424 / 28不能镶嵌成平面图案。任意剪一些形状、大小相同的正六边形纸板,拼一拼,看它们能否镶嵌成平面图案。投影5能镶嵌成平面图案。为什么有的多边形可以镶嵌成平面图案,有的又不能呢? 仔细观
35、察我们镶嵌成的平面图案,在拼接的同一个顶点处各个角有什么关系? 同一个顶点处的各个角的和等于360,且相邻的多边形有公共边.。也就是说,只要满足这条件就能进行平面镶嵌。正五边形在同一个顶点处各角的和不能等于360。,所以正五边形不能进行平面镶嵌。同样的道理,其它多边形也不能单独进行平面镶嵌。因此,能单独进行平面镶嵌的只有三角形、四边形和正六边形。三、平面镶嵌的设计既然只要满足“同一个顶点处的各个角的和等于360”就能进行平面镶嵌,那么多种多边形只要满足这个条件也应该能进行平面镶嵌。试一试,哪些多边形可以在一起进行平面镶嵌?1、正三角形和正方形投影63、正八边形与正方形投影825 / 284、正
36、方形、正五边形和正十二边形投影9除此之外,还有很多,大家可以在课外搜集一些其他用多边形镶嵌的平面图案,或者 设计一些地板的平面镶嵌图,相互交流一下。四、课堂练习1.能够用一种正多边形铺满地面的是 _。A、正五边形B、正六边形C、正七边形D、正八边形2.如果用正三角形进行镶嵌,那么在每个顶点的周围有个正三角形。3.如果用正三角形和正六边形进行镶嵌,那么在每个顶点的周围有_个正三角形和_个正六边形或_ 个正三角形和_个正六边形。五、 课堂小结1、 能单独进行平面镶嵌的多边形有哪几种?2、 平面镶嵌的条件是什么?3、 可以用一种多边形进行平面镶嵌,也可以用多种多边形进行平面镶嵌。平面镶嵌在生活中有着
37、广泛的应用。26 / 28备课时间授课时间课型课时第七章复习二(722 7.4 )一、双基回顾1、三角形的外角:三角形与另组成的角叫做三角形的外角如图1,/是厶ABC的一个外角图1图22、三角形外角的性质(1)三角形的一个外角等于两个内角和注意:三角形的外角和等于360.1如图2,/=45,贝U x=.(2)三角形的一个外角与它不相邻的任何一个内角2如图,ABC中,/1与/A有什么关系?为什么?3、多边形和正多边形 在平面内,由相接组成的图形叫做 多边形。注意:多边形分为凸多边形和凹多边形,我们现在只研究凸多边形各相等,各相等的多边形叫做正多边形。4、对角线连接多边形线段叫做对角线。3从九边形
38、的一个顶点作对角线,能作条,可把九边形分成个三角形。BC27 / 285、多边形的内角和、外角和n边形的内角和是;n边形的外角和是.4一个多边形的内角和等于它的外角和,这个多边形是边形。6、平面镶嵌28 / 28能单独镶嵌的图形有。5正五边形不能单独镶嵌的原因是什么?用多种正多边形镶嵌必须满足条件:几种多边形在的内角的和为6某公园便道用三种不同的正多边形地砖镶嵌,已选好了正十二边形和正方形两 种,还需选用二、例题导引例1(1)已知正多边形的一个内角是150。,求这个多边形对角线的条数?(2)n边形的边数每增加1条,其内角和增加多少度?例2如图,一个任意五角星的五个角的和是多少?三、练习提高夯实基础1、若三角形的一个外角小于与它相邻的内角,则这个三角形是()A.直角三角形B.锐角三角形C.钝角三角形D.无法确定2、如图,/CAB的外角为12,/B为40、52B、42C、10D、40C-1上M2A340120 &AE BDE12BBAC - DC B)AHE2题3题例3一个零件形状如图所示,按规定/aOBAC=9
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- LY/T 2675-2024石斛
- 五年级下册听评课记录表
- 鲁教版地理七年级下册7.1《自然特征与农业》听课评课记录
- 生态修复资源共享合同(2篇)
- 甲乙方协议书(2篇)
- 2025年硫酸黏菌素类产品合作协议书
- 七年级数学上册第29课时和、差、倍、分问题听评课记录新湘教版
- 新版华东师大版八年级数学下册《17.3.2一次函数的图象1》听评课记录21
- 统编版初中语文八年级下册第五课《大自然的语言》听评课记录
- 七年级(人教版)集体备课听评课记录:1.2.1《有理数》
- 机动车商业保险条款(2020版)
- 《大小比较》(说课课件)二年级下册数学西师大版
- 张五常子女和婚姻合约中的产权执行问题
- 口腔粘膜常见疾病
- 校园安全派出所
- 餐厅值班管理培训
- XXXX无线维护岗位认证教材故障处理思路及案例分析
- 酒店春节营销方案
- 营销管理方案中的定价策略与盈利模式
- 2024年西宁城市职业技术学院高职单招(英语/数学/语文)笔试历年参考题库含答案解析
- 2024年临沂市高三一模(学业水平等级考试模拟试题)物理试卷
评论
0/150
提交评论