版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、Glossary: ls(least squares)最小二乘法 R-sequared样本决定系数(R2):值为0-1,越接近1表示拟合越好,>0.8认为可以接受,但是R2随因变量的增多而增大,解决这个问题使用来调整 Adjust R-seqaured() S.E of regression回归标准误差 Log likelihood对数似然比:残差越小,L值越大,越大说明模型越正确 Durbin-Watson stat:DW统计量,0-4之间 Mean dependent var因变量的均值 S.D. dependent var因变量的标准差 Akaike info criter
2、ion赤池信息量(AIC)(越小说明模型越精确) Schwarz ctiterion:施瓦兹信息量(SC)(越小说明模型越精确) Prob(F-statistic)相伴概率 fitted(拟合值) 线性回归的基本假设: 1.自变量之间不相关 2.随机误差相互独立,且服从期望为0,标准差为的正态分布 3.样本个数多于参数个数 建模方法: ls y c x1 x2 x3 . x1 x2 x3的选择先做各序列之间的简单相关系数计算,选择同因变量相关系数大而自变量相关系数小的一些变量。模型的实际业务含义也有指导意义,比如m1同gdp肯定是相关的。 模型的建立是简单的,复杂的是模型的检验、评价和之后的调
3、整、择优。 模型检验: 1)方程显著性检验(F检验):模型拟合样本的效果,即选择的所有自变量对因变量的解释力度 F大于临界值则说明拒绝0假设。 Eviews给出了拒绝0假设(所有系统为0的假设)犯错误(第一类错误或错误)的概率(收尾概率或相伴概率)p值,若p小于置信度(如0.05)则可以拒绝0假设,即认为方程显著性明显。 2)回归系数显著性检验(t检验):检验每一个自变量的合理性 |t|大于临界值表示可拒绝系数为0的假设,即系数合理。t分布的自由度为n-p-1,n为样本数,p为系数位置 3)DW检验:检验残差序列的自相关性,检验基本假设2(随机误差相互独立) 残差:模型计算值与资料实测值之差为
4、残差 0<=dw<=dl 残差序列正相关,du<dw<4-du 无自相关, 4-dl<dw<=4负相关 ,若不在以上3个区间则检验失败,无法判断 demo中的dw=0.141430 ,dl=1.73369,du=1.7786,所以存在正相关 模型评价 目的:不同模型中择优 1)样本决定系数R-squared及修正的R-squared R-squared=SSR/SST 表示总离差平方和中由回归方程可以解释部分的比例,比例越大说明回归方程可以解释的部分越多。 Adjust R-seqaured=1-(n-1)/(
5、n-k)(1-R2) 2)对数似然值(Log Likelihood,简记为L) 残差越小,L越大 3)AIC准则 AIC= -2L/n+2k/n, 其中L为 log likelihood,n为样本总量,k为参数个数。 AIC可认为是反向修正的L,AIC越小说明模型越精确。 4)SC准则 SC= -2L/n + k*ln(n)/n 用法同AIC非常接近 预测forecast root mean sequared error(RMSE)均方根误差 Mean Absolute Error(MAE)平均绝对误差 这两个变量取决于因变量的绝对值, MAPE(Mean Abs. Percent Error
6、)平均绝对百分误差,一般的认为MAPE<10则认为预测精度较高 Theil Inequality Coefficient(希尔不等系数)值为0-1,越小表示拟合值和真实值差异越小。 偏差率(bias Proportion),bp,反映预测值和真实值均值间的差异 方差率(variance Proportion),vp,反映预测值和真实值标准差的差异 协变率(covariance Proportion),cp,反映了剩余的误差 以上三项相加等于1。 预测比较理想是bp,vp比较小,值集中在cp上。 eviews不能直接计算出预测值的置信区间,需要通过置信区间的上下限公式来计算。如何操
7、作? 其他 1)Chow检验 chow's breakpoint检验 零假设是:两个子样本拟合的方程无显著差异。有差异则说明关系中结构发生改变 demo中 Chow Breakpoint Test: 1977Q1 F-statistic 2.95511837136742 Prob. F(3,174) 0.0339915698953355 Log likelihood ratio 8.94507926849178 Prob. Chi-Square(3) 0.0300300700620291 p值<0.05,可拒绝0假设,即认为各个因素的影响强弱发生了改变。 问题是如何才能准
8、确的找到这个或这几个断点?目前的方法是找残差扩大超出边线的那个点,但这是不准确的,在demo中1975Q2的残差超出,但是chow's breakpoint检验的两个p值都接近0.2,1976Q3开始两个p值才小于0.05,并且有逐渐减小之势。 chow's forecast检验 用断点隔断样本,用之前的样本建立回归模型,然后用这个模型对后一段进行预测,检验这个模型对后续样本的拟合程度。 0假设是:模型与后段样本无显著差异 demo中的1976Q4作为break point,得到两个p值为0,即认为两段样本的系数应该是不同的。 2)自变量的选择 testadd检验: 操作方法是
9、: eqation name.testadd ser1 ser2 . 0假设:应该将该变量引入方程 检验统计量:wald,LR 结果:通过两个p值(Prob. F,Prob Chi-sequare)看是否拒绝原假设 testdrop检验: 操作方法是: eqation name.testdrop ser1 ser2 . 0假设:应该将该变量剔除 检验统计量:wald,LR 结果:通过两个p值(Prob. F,Prob Chi-sequare)看是否拒绝原假设 含定性变量的回归模型 分为:自变量含定性变量,因变量含定性变量。后一种情况较为复杂 建立dummy 变量(名义变量):用D表示 当变量有
10、m种情况时,需要引入m-1个dummy变量 处理办法:把定性变量定义成0.1.2等数值后和一般变量同样处理 常见问题及对策 1)多重共线性(multicollinearity): p个回归变量之间存在严格或近似的线性关系 诊断方法: 1.如果模型的R-sequared很大,F检验通过,但是某些系统的t检验没通过 2.某些自变量系数之间的简单相关系数很大 3.回归系数符号与简单相关系统符号相反 以上3条发生都有理由怀疑存在多重共线性 方差扩大因子(variance inflation factor VIFj)是诊断多重共线性的常用手段。 VIFj为矩阵(X X)-1第j个对角元素cjj=1/(1
11、-R2j)(j=1,2,p) 其中R2j为以作为cj因变量,其余p-1个自变量作为自变量建立多元回归模型所得的样本决定系数,所以R2j越大则说明自变量之间自相关性越大,此时也越大,可以认为VIFj>10(R2j>0.9)则存在多重共线性。 还可以使用VIFj的平均数作为判断标准,如果avg(VIFj)远大于10则认为存在多重共线性。 eviews里如何使用VIF法?-建立方程,然后手工建立scalar vif。demo中GDP和PR的vif为66,存在多重共线性? 只有一个自变量的方程是否会失效?此时dw值只有0.01远小于dl,说明GDP远远不是PR能决定的。结合
12、testdrop将PR去除,两个p值为0,说明不能把PR去除。 在eviews中当自变量存在严重的多重共线性时将不能给出参数估计值,而会报错:nearly singular matrix 多重共线性的处理: 1.剔除自变量,选择通过testdrop实验,并且vif值最大的那个 2.差分法,在建立方程时填入 ls m1-m1(-1) c gdp-gdp(-1) pr-pr(-1)。m1(-1)表示上一个m1 差分法常常会丢失一些信息,使用时应谨慎。 demo中得到的模型,c 的p值0.11, pr-pr(-1)的p值为0.60,说明参数无效。 2)异方差性(Herteroskedasticity
13、) 即随机误差项不满足基本假设的同方差性,异方差性说明随机误差中有些项对因变量的影响是不同于其他项的。 一般地,截面数据做样本时出现异方差性的可能较大,或者说都存在异方差性 若存在异方差性,用OLS估计出来的参数,可能导致估计值虽然是无偏的,但不是有效的。 (截面数据就是同一时间点上各个主体的数据,比如2007年各省的GDP数据放在一起就是一组截面数据 与之相对的是时间序列数据 如河北省从00年到07年的数据就是一组时间序列数据 两者综合叫面板数据 ) 00年到07年各省的数据综合在一起就叫面板数据 诊断方法: 1.图示法,以因变量作为横坐标,以残差项为纵坐标,根据散点图判断是否存在相关性。
14、(选择两个序列作为group打开,先选中的序列将作为group的纵坐标) 2.戈里瑟(Glejser)检验: ? 3.怀特(White)检验: 用e2作为因变量,原先的自变量及自变量的平方(还可以加上各自变量之间的相互乘积)作为自变量 建立模型。 怀特检验的统计量为:m=n*R2(n是样本容量,R2是新模型的拟合优度), m 2(k) k为新模型除常数项之外的自变量个数 零假设:模型不存在异方差性 操作:在估计出来的方程中,view-residual tests-White Herteroskedasticity(no cross/cross) 分别为是否含自变量交叉项 demo中的两个p值为
15、0,所以拒绝零假设,认为存在严重的异方差性。 异方差性的处理: 1.加权最小二乘法(WLS weighted least sequare)。 最常用的方法,一般用于异方差形式可知的情况。基本思路是赋予残差的每个观测值不同的权数,从而使模型的随机误差项具有相同的方差。 2.自相关相容协方差(Heteroskedasticity and antocorrelation consistent convariances HAC) 用于异方差性形式未知时。在建模时在options中选择Heteroskedasticity consistent convariances 再从white,newey-wes
16、t中选择一种。 HAC不改变参数的点估计,改变的知识估计标准差。如何改变标准差? 3)自相关性 残差项不满足相互独立的假设。一般的,经济时间序列中自相关现象较为常见,这主要是经济变量的滞后性带来的。 自相关性将导致参数估计值虽然是无偏的,但不是有效的。 诊断方法: 1.绘制残差序列图。如果序列图成锯齿形或循环状的变化,可以判定存在自相关 2.回归检验法: 以残差e(t)为被解释变量,以各种可能的相关变量,如 e(t-1) e(t-2)作为自变量,选择显著的最优拟合模型作为自相关的形式。demo中以 ls residm1 c residm1(-1) residm1(-2)后 发现c的p值为0.5
17、4,做testdrop实验,两个p值都>0.5 可以将c剔除。剔除c后: Dependent Variable: RESIDM1 Method: Least Squares Date: 12/29/07 Time: 11:26 Sample (adjusted): 1952Q3 1996Q4 Included observations: 178 after adjustments Variable Coefficient Std. Error t-Statistic Prob. RESIDM1(-1) 1.215361 0.077011 15.78173 0.0000 RESIDM1(-2) -0.271664 0.078272 -3.470763 0.0007 R-squared 0.868569 Mean dependent var 0.011855 Adjusted R-squared 0.867823 S.D. dependent var 26.91138 S.E. of regression 9.783961
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 会计数据分析 TestBank Richardson1e-Chapter08-TB
- 微生物代谢控制发酵-绪论-原理课件
- Westwin:2024年户外家具出海趋势报告 当春季踏青不远行 户外家具出海的增长机会在哪里
- 湖南省郴州市桂阳县蒙泉学校2024届九年级下学期中考一模数学试卷(含答案)
- 5年中考3年模拟试卷初中生物八年级下册专项素养综合全练(一)
- 5年中考3年模拟试卷初中道德与法治八年级下册01第1课时公平正义的价值
- 让考生最头疼的十大听力问题盘点
- 2024年山东德州中考生物卷试题真题及答案详解(精校打印)
- 小学四年级下册全册音乐教案(人教版)
- 中学小初贯通式培养方案
- 通信企业管理通信工程概算预算取费说明传输设备部分精编
- 医学院教学工作会议PPT课件
- 高低压柜元器件综合计算表 新手利器
- 部编版六年级道德与法治上册《我们是场外“代表”》PPT课件
- 常用二极管型号及参数手册
- 塔吊吊次分配及计算(共3页)
- 荷载与结构设计方法 其他荷载与作用PPT课件
- 硕士研究生入学登记表
- 除数是整十数的笔算除法
- 回锅肉ppt课件
- 1984年高考数学试题(全国理)及答案[1]
评论
0/150
提交评论