信号与系统实验报告,(2)_第1页
信号与系统实验报告,(2)_第2页
信号与系统实验报告,(2)_第3页
信号与系统实验报告,(2)_第4页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、本文格式为word版,下载可任意编辑信号与系统实验报告,(2) 试验三 常见信号得atlab 表示及运算 一、试验目得 。熟识常见信号得意义、特性及波形 2.学会使用 matlab 表示信号得方法并绘制信号波形 、 把握使用atlab 进行信号基本运算得指令 4、 熟识用atab 实现卷积积分得方法 二、试验原理 依据alab 得数值计算功能与符号运算功能,在 mata中,信号有两种表示方法,一种就是用向量来表示,另一种则就是用符号运算得方法。在采纳适当得 mlab 语句表示出信号后,就可以利用 mata中得绘图命令绘制出直观得信号波形了。 、连续时间信号 从严格意义上讲,atl并不能处理连续

2、信号。在alb 中,就是用连续信号在等时间间隔点上得样值来近似表示得,当取样时间间隔足够小时,这些离散得样值就能较好地近似出连续信号。在 matab 中连续信号可用向量或符号运算功能来表示。 向量表示法 对于连续时间信号,可以用两个行向量 f 与 t 来表示,其中向量 t 就是用形如得命令定义得时间范围向量,其中,为信号起始时间,为终止时间,p 为时间间隔。向量 f 为连续信号在向量 所定义得时间点上得样值 符号运算表示法 假如一个信号或函数可以用符号表达式来表示,那么我们就可以用前面介绍得符号函数专用绘图命令 ezplot()等函数来绘出信号得波形。 得 常见信号得 m tla 表示 单位阶

3、跃信号 单位阶跃信号得定义为: 方法一: 调用 h viside(t) 函数 首先定义函数 heisd() 得函数文件,该文件名应与函数名同名即eaviside、m. 定义函数文件,函数名为 havsi,输入变量为 x,输出变量为 function y= haviside(t) y(t0); %定义函数体,即函数所执行指令 %此处定义0 时 y=1,t0 时=0,留意与实际得阶跃信号定义得区分. 方法二:数值计算法 在atlab 中,有一个特地用于表示单位阶跃信号得函数,即 s e un( )函数,它就是用数值计算法表示得单位阶跃函数其调用格式为: st pfun(t,t0) 其中,t 就是以

4、向量形式表示得变量,t0 表示信号发生突变得时刻,在以前,函数值小于零,以后函数值大于零。好玩得就是它同时还可以表示单位阶跃序列,这只要将自变量以及 取样间隔设定为整数即可。 符号函数 符号函数得定义为: 在 matlab 中有特地用于表示符号函数得函数 s gn() ,由于单位阶跃信号 (t)与符号函数两者之间存在以下关系:,因此,利用这个函数就可以很简单地生成单位阶跃信号. 2、离散时间信号 离散时间信号又叫离散时间序列,一般用 表示,其中变量 k 为整数,代表离散得采样时间点(采样次数)。 在 matla中,离散信号得表示方法与连续信号不同,它无法用符号运算法来表示,而只能采纳数值计算法

5、表示,由于 matlb 中元素得个数就是有限得,因此,matab无法表示无限序列;另外,在绘制离散信号时必需使用特地绘制离散数据得命令,即 stem( ()函数,而不能用lot()函数。 单位序列 单位序列)得定义为 单位阶跃序列 单位阶跃序列得定义为 、卷积积分 两个信号得卷积定义为: matab 中就是利用 conv 函数来实现卷积得. 功能:实现两个函数与得卷积. 格式:=cnv(f1,2) 说明:=f 1 (t),f2=f 2 (t) 表示两个函数,g(t)表示两个函数得卷积结果。 三、试验内容 1、分别用 matla得向量表示法与符号运算功能,表示并绘出下列连续时间信号得波形: (1

6、) t=:0、01:0; t1=-:、01:-0、1; 2=:0、01:10; f1=zeros(1,lngth(t)),ne(1,lngh(t2); f=(2exp(*)、f1; po(t,f) axi(-,10,0,2、) sys t; =ym((2-xp(t)*havisie()"); zo(f,-1,10); (2) t=2:0、01:8; f=0、*(t)+os(pi*t2)、*(t)+0、*(t4); lot(,) syms ; f=sym("os(i*t/)*havside(t)heavis(t4) "); ezplt(f,-2,8); 、分别用 m

7、atlab 表示并绘出下列离散时间信号得波形: (2) t=0:8; =10:1; =zeros(1,10),zeros(1,7); stem(1,f) axs(10,5,0,1); (3) t=0:5; t10:0; f=eos(1,10),sin(t*pi/); sem(t1,f) xis(10,50,2,) 3、已知两信号,求卷积积分,并与例题比较。 t1=1:0、01:0; t=0:0、01:1; 31:0、01:; f1=s(ie(t1); f2nes(size(t2)); gco(1,f2); splo(3,1,),po(t1,f1); subplot(,1,),plot(t2,f

8、2); subot(,1,3),lot(t3,); 与例题相比较,(t)得定义域不同,最大值对应得横坐标也不同。 4、已知,求两序列得卷积与 . n; =; l=n+m1; ,1,2; f=1,2,3,4,; g=v(1,f2); kf1=0:n-1; kf=0:1; kg=0:l; blot(1,1),stem(kf,f1,*k);xabel("k"); yal(f1(k)");grd on sbpt(1,3,2),stem(f2,f2,*k");xlabe(k); labl("f2(k);grd ubplot(1,3,3);ste(k,g,

9、k);xlabe(k"); ylabel("g());grid n 试验心得:第一次接触 mutlab 这个绘图软件,觉得挺新颖得,同时 ,由于之前不太学信号与系统遇到一些不懂得问题,结合这些图对信号与系统有更好得了解。 试验四 连续时间信号得频域分析 一、 试验目得 。熟识傅里叶变换得性质 .熟识常见信号得傅里叶变换 。了解傅里叶变换得tab 实现方法 二、 试验原理 从已知信号求出相应得频谱函数得数学表示为: 傅里叶反变换得定义为: 在 mala中实现傅里叶变换得方法有两种,一种就是利用 matlab 中得 y bo math too x 供应得专用函数直接求解函数得傅

10、里叶变换与傅里叶反变换,另一种就是傅里叶变换得数值计算实现法. 1、直接调用专用函数法 在 matlab 中实现傅里叶变换得函数为: f=furer( f ) 对(t)进行傅里叶变换,其结果为 f(w) =fourier(f,v) 对 f(t)进行傅里叶变换,其结果为(v) f=fourir( f,u,v ) 对(u)进行傅里叶变换,其结果为 f() 傅里叶反变换 f=ifourer( f ) 对 f(w)进行傅里叶反变换,其结果为 f() f=orir(f,u) 对(w)进行傅里叶反变换,其结果为(u) fifoure( f,v,u ) 对()进行傅里叶反变换,其结果为 f() 留意: (1

11、)在调用函数 fuier( )及 ifouri( )之前,要用 syms 命令对全部需要用到得变量(如 t,u,v,w)等进行说明,即要将这些变量说明成符号变量。对ourer( )中得 f 及ifourier( )中得 f 也要用符号定义符 sm 将其说明为符号表达式。 (2)采纳 fuier( )及 foure( )得到得返回函数,仍旧为符号表达式。在对其作图时要用 ezpl( )函数,而不能用t()函数. (3)uri( )及ourie( )函数得应用有许多局限性,假如在返回函数中含有 ()等函数,则 ezplo( )函数也无法作出图来。另外,在用 fourier( )函数对某些信号进行变

12、换时,其返回函数假如包含一些不能直接表达得式子,则此时当然也就无法作图了。这就是ourir( )函数得一个局限。另一个局限就是在许多场合,尽管原时间信号 f(t)就是连续得,但却不能表示成符号表达式,此时只能应用下面介绍得数值计算法来进行傅氏变换了,当然,大多数状况下,用数值计算法所求得频谱函数只就是一种近似值。 2、傅里叶变换得数值计算实现法 严格说来,假如不使用 symboic 工具箱,就是不能分析连续时间信号得。采纳数值计算方法实现连续时间信号得傅里叶变换,实质上只就是借助于atlab 得强大数值计算功能,特殊就是其强大得矩阵运算力量而进行得一种近似计算。傅里叶变换得数值计算实现法得原理

13、如下: 对于连续时间信号 f(t),其傅里叶变换为: 其中 为取样间隔,假如 f(t)就是时限信号,或者当|t大于某个给定值时,f(t)得值已经衰减得很厉害,可以近似地瞧成就是时限信号,则上式中得取值就就是有限得,假定为 n,有: 若对频率变量 进行取样,得: 通常取:,其中就是要取得频率范围,或信号得频带宽度。采纳 malab 实现上式时,其要点就是要生成 f(t)得个样本值得向量,以及向量,两向量得内积(即两矩阵得乘积),结果即完成上式得傅里叶变换得数值计算。 留意:时间取样间隔 得确定,其依据就是 必需小于奈奎斯特(nyquist)取样间隔。假如 f(t)不就是严格得带限信号,则可以依据

14、实际计算得精度要求来确定一个适当得频率为信号得带宽。 三、 试验内容 1、编程实现求下列信号得幅度频谱 (1) 求出得频谱函数 f 1 ( j ),请将它与上面门宽为 2 得门函数得频谱进行比较,观看两者得特点,说明两者得关系。 (2) 三角脉冲 (3) 单边指数信号 (4) 高斯信号 (1) sys t w tsym("heaiside(*t+1)heaviie(2*-)); f=furr(g,t,); ff=mae(convet,fw,pieewise"); fpabs(ff); eplot(f,10*pi 10*p);grd; xs(-* 0pi 0 2、2) 与得频

15、谱比较,得频谱函数 f 1 (j)最大值就是其得2 () sm w; t=sym("(1t)(havie(+1)hevid(t))+(1-t)(eaviside(t)heaiside(t1))"); f=fourer(gt,t,w); fw=aple("coet,fw,picewe"); ffpab(w); zpot(ffp,1*pi 10p);grid; axis(10*pi *p 0 、) (3) ym t w tsm(ex(-)eavisie(t)); ffouie(t,t,w); =maple("ovrt",fw,iecse)

16、; fas(fw); eplt(fp,10*pi 0*pi);grid; axis(1pi 10*i 1 ) (4) sym t w gt=ym(ep(-t2)"); f=for(gt,t,w); ffwmap(convert,fw,pecise); ep(w,30 30);grid; axis(30 30 1 2) 、利用 iourir( ) 函数求下列频谱函数得傅氏反变换 () (2) (1) syms t w fw=s(-i*2w/(16w)); t=ifourier(,w,t); t 运行结果: t = xp(*)*esde(t)+exp(t)head(t) (2) syms

17、 t w fwsym("((i*w)2+5*iw-8)(iw)2+6*i*w+5)); ft=ori(w,w,t); ft 运行结果: ft = diac(t)+(-3exp(-t)2exp(-5*t))*visie(t) 试验 心得 malab 不但具有数值计算力量,还能建仿照真,能关心我们理解不同时间信号得频域分析。 试验五 连续时间系统得频域分析 一、 试验目得 1. 学习由系统函数确定系统频率特性得方法. 2. 学习与把握连续时间系统得频率特性及其幅度特性、相位特性得物理意义. 3. 通过本试验了解低通、高通、带通、全通滤波器得性能及特点。 二、 试验原理及方法 频域分析法与

18、时域分析法得不同之处主要在于信号分解得单元函数不同。在频域分析法中,信号分解成一系列不同幅度、不同频率得等幅正弦函数,通过求取对每一单元激励产生得响应,并将响应叠加,再转换到时域以得到系统得总响应。所以说,频域分析法就是一种变域分析法.它把时域中求解响应得问题通过 frier 级数或 forier 变换转换成频域中得问题;在频域中求解后再转换回时域从而得到最终结果.在实际应用中,多使用另一种变域分析法:复频域分析法,即 laplce 变换分析法。 所谓频率特性,也称频率响应特性,就是指系统在正弦信号激励下稳态响应随频率变化得状况,包括幅度随频率得响应与相位随频率得响应两个方面.利用系统函数也可

19、以确定系统频率特性,公式如下: 幅度响应用表示,相位响应用表示。 本试验所讨论得系统函数 h()就是有理函数形式,也就就是说,分子、分母分别就是 m、n 阶多项式。 要计算频率特性,可以写出 为了计算出、得值,可以利用复数三角形式得一个重要特性: 而,则 利用这些公式可以化简高次幂,因此分子与分母得复数多项式就可以转化为分别对实部与虚部得实数运算,算出分子、分母得实部、虚部值后,最终就可以计算出幅度、相位得值了。 三、 试验内容 a) ,m 取值区间 0,1,绘制一组曲线 m=、1,0、3,0、5,0、7,0、9; b) 绘制下列系统得幅频响应对数曲线与相频响应曲线,分析其频率特性. (1)

20、(2) (3) a) % deign2、m figue lpha0、1,0、,0、5,0、7,0、9; olor= g b" y" " % r b y m c k (红,绿,蓝,黄,品红,青,黑) f =:5 b=0 lpha(n); % 分子系数向量 a=alpha(n)-alpa(n) 1; % 分母系数向量 printsys(,a,"s") hz,=fres(,a); =w、/pi; mg=b(hz); eroidxfd(agh=); mgh(zsindx)=1; agh20lo10(a); magh(zeroindx)=-n; angh

21、angle(hz); ngh=nap(anh)80/i; sbpot(,2,1) lot(w,h,coorn(n); ol n sublt(1,2) po(w,angh,coorn(n)); old on end ubpo(1,,) od of xll("特征角频率(timspi rd/sample)") title(幅频特性曲线 |h()| (db)"); bpot(1,2,2) old f xlbel(特征角频率 (tis rad/sple) itle("相频特性曲线 theta(w) (degees); ) (1) % degn1、 =1,; %

22、分子系数向量 a=1,1; % 分母系数向量 prins(,"s) hz,=rq(b,a); w=、/p; magh=abs(hz); zrondx=nd(magh=); mag(zerosinx)=1; mag=2*g10(agh); % 以分贝 mah(rosin)=-inf; anhane(z); ah=unp(ang)*18pi; % 角度换算 fiu subplot(1,2,1) l(w,magh); gid on xlabe(特征角频率(imepi rd/sample) titl(幅频特性曲线 |h(w)| (d); subpt(,2,2) plot(w,angh); g

23、i on xlabel(特征角频率 (imesp rasme)) til(相频特性曲线 thta(w) (deree); (2) % desgn1、 b=,0; % 分子系数向量 a=,3,; % 分母系数向量 pintsys(b,a,s) h,req(,a); w=w、/pi; magh=abs(hz); zersinxfin(agh=); mag(zend)1; agh20log10(magh); % 以分贝 magh(zerosindx)-i; angh=ngle(z); ang=nrp(angh)*180/pi; 角度换算 iue ubl(,2,1) lot(w,ag); gri n

24、al("特征角频率(times radamle)) ttle(幅频特性曲线 () (db)); sublt(1,2,) pt(w,ah); grid o xlbel("特征角频率 (timespi r/aple)") titl("相频特性曲线 he(w) (drees)); (3) % esin1、m =,-1; 分子系数向量 =,1; % 分母系数向量 prinsys(b,a,"s") hz,wfreq(b,a); w、/pi; mah=abs(hz); zerosid=find(mh=0); mh(zesndx); magh2*l

25、og10(magh); % 以分贝 g(erosindx)=-in; angh=angle(hz); ng=unwap(gh)*18p; 角度换算 iure ubplt(1,2,) plt(w,agh); gi on xlabel(特征角频率(imsi adale)") tite("幅频特性曲线 h()| (db)); subplot(1,,2) plot(w,angh); grd on xbl(特征角频率 (timespi ra/mple) tite(相频特性曲线 the(w) (deges)"); 试验心得: :虽然之前用公式转换到频域上分析,但就是有时会觉得

26、挺抽象得,不太好理解。依据这些图像结合起来更进一步对信号得了解。同时,这个在编程序时,虽然遇到一些问题,但就是终于解决了。 试验六 离散时间系统得 z 域分析 一、 试验目得 1. 学习与把握离散系统得频率特性及其幅度特性、相位特性得物理意义。 2. 深化理解离散系统频率特性与对称性与周期性。 3. 熟悉离散系统频率特性与系统参数之间得系统 4. 通过、修改并调试本试验所给源程序,加强计算机编程力量。 二、 试验原理及方法 对于离散时间系统,系统单位冲激响应序列得 fier 变换完全反映了系统自身得频率特性,称为离散系统得频率特性,可由系统函数求出,关系式如下: ( 6 ) 由于就是频率得周期

27、函数,所以系统得频率特性也就是频率得周期函数,且周期为,因此讨论系统频率特性只要在范围内就可以了. å å å¥-¥ =¥-¥ =¥-¥ =- = =n n nj jn n h j n n h e n h e h ) sin( ) ( ) cos( ) ( ) ( ) ( w ww w ( 6 2 ) 简单证明,其实部就是得偶函数,虚部就是得奇函数,其模得得偶函数,相位就是得奇函数。因此讨论系统幅度特性、相位特性,只要在范围内争论即可。 综上所述,系统频率特性具有周期性与对称性,深化理解这一点就是非常重要

28、得。 当离散系统得系统结构肯定,它得频率特性将随参数选择得不同而不同,这表明白系统结构、参数、特性三者之间得关系,即同一结构,参数不同其特性也不同。 例如,下图所示离散系统, 其数学模型由线性常系数差分方程描述: 系统函数: 系统函数频率特性: 幅频特性: 相频特性: 简单分析出,当时系统呈低通特性,当时系统呈高通特性;当时系统呈全通特性.同时说明,在系统结构如图所示肯定时,其频率特性随参数 a 得变化而变化. 三、 试验内容 ) 。 b) c) ) % dsig1、m b=1,,-1; 分子系数向量 =1,0,0、81; % 分母系数向量 printys(,a,"z")

29、z,wfez(b,a); w、/p; maghab(h); zerosndxfind(mah=0); magh(zrsin)=1; magh=0*og10(magh); % 以分贝 mag(zeosidx)=-in; ang=angle(z); ngh=unwa(anh)*180/p; % 角度换算 igur ubplot(1,2,) plot(,magh); gid n xlabel(特征角频率(times rd/sape)) tile(幅频特性曲线 |h(w)| (b)"); splot(1,2,2) plt(w,ngh); gr on xlabel("特征角频率 (timespi

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论