版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、 离散型随机变量及其分布列练习1、一款击鼓小游戏的规则如下:每盘游戏都需要击鼓三次,每次击鼓要么出现一次音乐,要么不出现音乐;每盘游戏击鼓三次后,出现一次音乐获得10分,出现两次音乐获得20分,出现三次音乐获得100分,没有出现音乐则扣除200分(即获得分)。设每次击鼓出现音乐的概率为,且各次击鼓出现音乐相互独立。2·1·c·n·j·y(1)设每盘游戏获得的分数为,求的分布列;(2)玩三盘游戏,至少有一盘出现音乐的概率是多少?(3)玩过这款游戏的许多人都发现,若干盘游戏后,与最初的分数相比,分数没有增加反而减少了。请运用概率统计的相关知识分析分
2、数减少的原因。2、若随机变量的分布列如下:01则当时,实数x的取值范围是()x1 1x2 1x2 1x23、某射手有4发子弹,射击一次命中目标的概率为,如果命中就停止射击,否则一直到子弹用尽,用表示用的子弹数,则等于( )(A) (B) (C)
3、; (D) 以上都不对4、一款击鼓小游戏的规则如下:每盘游戏都需击鼓三次,每次击鼓要么出现一次音乐,要么不出现音乐;每盘游戏击鼓三次后,出现一次音乐获得10分,出现两次音乐获得20分,出现三次音乐获得100分,没有出现音乐则扣除200分(即获得200分)设每次击鼓出现音乐的概率为,且各次击鼓出现音乐相互独立21·世纪*教育网()设每盘游戏获得的分数为,求的分布列;()玩三盘游戏,至少有一盘出现音乐的概率是多少?5、电子蛙跳游戏是: 青蛙第一步从如图所示的正方体顶点起跳,每步从一顶点跳到相邻的顶点(1)直接写出跳两步跳到的概率;(2)求跳三步跳到的概
4、率;(3)青蛙跳五步,用表示跳到过的次数,求随机变量的概率分布6、甲、乙、丙三人按下面的规则进行乒乓球比赛:第一局由甲、乙参加而丙轮空,以后每一局由前一局的获胜者与轮空者进行比赛,而前一局的失败者轮空比赛按这种规则一直进行到其中一人连胜两局或打满6局时停止设在每局中参赛者胜负的概率均为,且各局胜负相互独立求:www-2-1-cnjy-com(1)打满4局比赛还未停止的概率;(2)比赛停止时已打局数的分布列与期望E()令Ak,Bk,Ck分别表示甲、乙、丙在第k局中获胜7、近年来空气污染是一个生活中重要的话题, PM25就是其中一个指标。PM25指大气中直径小于或等于25微米的颗粒物,也称为可入肺
5、颗粒物PM25日均值在35微克立方米以下空气质量为一级:在35微克立方米75微克立方米之间空气质量为二级;在75微克立方米以上空气质量为超标 淮北相山区2014年12月1日至I0日每天的PM25监测数据如茎叶图所示(1)期间的某天小刘来此地旅游,求当天PM25日均监测数据未超标的概率; (2)陶先生在此期间也有两天经过此地,这两天此地PM25监测数据均未超标请计算出这两天空气质量恰好有一天为一级的概率;【版权所有:21教育】(3)从所给10天的数据中任意抽取三天数据,记表示抽到PM2.5监测数据超标的天数,求的分布列及期望21教育名师原创作品8、某学校举行知识竞赛,第
6、一轮选拔共设有四个问题,规则如下:1 每位参加者记分器的初始分均为分,答对问题分别加分、分、分、分,答错任一题减分;21*cnjy*com2 每回答一题,记分器显示累计分数,当累计分数小于分时,答题结束,淘汰出局;当累计分数大于或等于分时,答题结束,进入下一轮;当答完四题,累计分数仍不足分时,答题结束,淘汰出局;3 每位参加者按问题顺序作答,直至答题结束。 假设甲同学对问题回答正确的概率依次为、,且各题回答正确与否相互之间没有影响。()求甲同学能进入下一轮的概率;()用表示甲同学本轮答题结束时答题的
7、个数,求的分布列。9、在一块耕地上种植一种作物,每季种植成本为1000元,此作物的市场价格和这块地上的产量均具有随机性,且互不影响,其具体情况如下表:(1)设X表示在这块地上种植1季此作物的利润,求X的分布列;(2)若在这块地上连续3季种植此作物,求这3季中至少有2季的利润不少于2000元的概率10、已知离散型随机变量X的分布列为 则X的数学期望E(X)=A B2 C &
8、#160; D311、在一块耕地上种植一种作物,每季种植成本为1000元,此作物的市场价格和这块地上的产量均具有随机性,且互不影响,其具体的情况如下表: 作物产量(kg)300500概率0.50.5 作物市场价(元kg)610概率0.40.6设X表示在这块地上种植1季此作物的利润,求X的分布列; 若在这块地上连续3季种植粗作物,求这3季中至少有2季的利润不少于2000元的概率。12、某市公租房的房源位于三个片区,设每位申请人只申请其中一个片区的房源,且申请其中任一个片区的房源是等可能的,求该市的任意4位申请人中:21·cn·jy·com
9、0; (1)恰有2人申请片区房源的概率; (2)申请的房源所在片区的个数的分布列和期望.13、一个袋中有6个同样大小的黑球,编号为1、2、3、4、5、6,现从中随机取出3个球,以X表示取出球的最大号码. 则X所有可能取值的个数是( )A6 B5 C4 D314、若随机变量X的概率分布表如下,则常数c=_ X01P9c2c38c15、袋中装有编号为的球个
10、,编号为的球个,这些球的大小完全一样。(1)从中任意取出四个,求剩下的四个球都是号球的概率;(2)从中任意取出三个,记为这三个球的编号之和,求随机变量的分布列及其数学期望.16、某工厂生产甲乙两种产品,甲产品的一等品率为80,二等品率为20,乙产品的一等品率为90,二等品率为10,生产1件甲产品,若是一等品,则获得利润4万元,若是二等品,则亏损1万元,生产1件乙产品,若是一等品,则获得利润6万元,若是二等品,则亏损2万元,设生产各件产品相互独立,www.21-cn-(1)记X(单位:万元)为生产1件甲产品和1件乙产品可获得的总利润,求X的分布列(2)求生产4件甲产品所获得的利润不少于10万元的
11、概率。17、某一随机变量的概率分布列如表,且E=1.5,则的值为_0123P0.1mn0.1 18、设X是一个离散型随机变量,其分布列为X-101P1-2q则q的值为( )A. 1
12、 B. C. D. 19、随机变量的概率分布列规律为其中为常数,则的值为 ( )A B
13、; C D20、随机变量的分布列如下:其中成等差数列,若,则的值是 答 案1、(1)可能取值有,10,20,100,分故分布列为1020100P(2)由(1)知:每盘游戏出现音乐的概率是则玩三盘游戏,至少有一盘出现音乐的概率是分(3)由(1)知,每盘游戏获得的分数为的数学期望是分这说明每盘游戏平均得分是负分,由概率统计的相关知识可知:许多人经过若干盘游戏后
14、,与最初的分数相比,分数没有增加反而会减少分21教育网2、C3、B4、()解:可能的取值为,.根据题意,有,. 8分所以的分布列为:1020100200()解:设“第盘游戏没有出现音乐”为事件,则. 10分所以“三盘游戏中至少有一盘出现音乐”的概率为. 13分因此,玩三盘游戏至少有一盘出现音乐的概率是.5、将A标示为0,A1、B、D标示为1,B1、C、D1标示为2,C1标示为3,从A跳到B记为01,从B跳到B1再跳到A1记为121,其余类推.从0到1与从3到2的概率为1,从1到0与从2到3的概率为,从1到2与从2到1的概率为.(1)P;
15、; 4(2)PP(0123)1;
16、160; 10【来源:21·世纪·教育·网】(3)X0,1,2. P(X1)P(010123)P(012123)P(012321)11111,P(X2)P(012323)11 ,P(X0)1P(X1)P(X2)或P(X0)P(010101)P(010121)P(012101)P(012121) 11111111, X012p 166、(1)由独立事件同时发生
17、与互斥事件至少有一个发生的概率公式知,打满4局比赛还未停止7、(1)记“恰好赶上PM2.5日均监测数据未超标”为事件A 3分(2)记“他这两次此地PM2.5监测数据均未超标且空气质量恰好有一天为一级” 为事件B,7分(3)的可能值为0,1,2,3
18、160; 10分 其分布列为:0123P 12分8、(1)设事件为:甲同学进入下一轮。事件为:甲同学答对了第题,事件为:甲同学答错了第题,则(2)的所有可能取值为:, 的分布列为:
19、; 9、(1)略(2)0.896【知识点】离散型随机变量及其分布列K6(1)设A表示事件作物产量为300kg,B表示事件作物市场价格6元/kg由题设知P(A)=0.5,P(B)=0.4利润=产量市场价格-成本,X可能的取值为50010-1000=4000,5006-1000=2000,30010-1000=2000,3006-1000=800P(X=4000)=(1-0.5) (1-0.4)=0.3, P(X=2000)= (1-0.5) 0.4+0.5(1-0.4)=0.521世纪教育网版权所有P(X=800)=0.50.4=0.2X的分布列为X40002000800P
20、(2)设表示事件第i季利润不少于2000元(i=1,2,3)由题意得,相互独立,由(1)知P()=P(X=4000)+ P(X=2000)-0.3+0.5-0.8P=+=0.89610、A11、()设A表示事件“作物产量为300kg”,B表示事件“作物市场价格为6元/kg”,则P(A)=0.5,P(B)=0.4,利润=产量×市场价格成本,X的所有值为:500×101000=4000,500×61000=2000,300×101000=2000,300×61000=800,则P(X=4000)=P()P()=(10.5)
21、5;(10.4)=0.3,P(X=2000)=P()P(B)+P(A)P()=(10.5)×0.4+0.5(10.4)=0.5,P(X=800)=P(A)P(B)=0.5×0.4=0.2,则X的分布列为:X 4000 2000 800 2-1-c-n-j-yP 0.3
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年春初中化学九年级下册(科粤版)上课课件 9.2 合成材料
- 四川省自贡市荣县中学2024-2025学年九年级上学期11月第一次月考英语试题(无答案)
- 期末模拟练习(试题)(含答案)-2024-2025学年四年级上册数学冀教版
- 安徽省淮南市西部地区2024-2025学年七年级上学期期中语文试题(含答案)
- 高一 人教版 化学 第四章 第二节《元素周期表和元素周期律的应用》课件
- 品管圈PDCA参赛案例-儿科提高危重患儿床旁交接班合格率医院品质管理成果汇报
- 高一年级 科技实践教材 第三单元《走进基因检测技术》课件
- 北京市海淀区2023-2024学年三年级上学期语文期末试卷
- 2025届贵州省金太阳联考一模生物试题(含答案解析)
- 《植物的生殖方式》课件
- 第23课 全民族浴血奋战与抗日战争的胜利 课件-高一上学期统编版(2019)必修中外历史纲要上
- DBJ15-22-2021-T 锤击式预应力混凝土管桩工程技术规程(广东省)
- 银行客户经理招聘面试题与参考回答(某大型集团公司)
- 私人酒窖租赁合同三篇
- 2024年国防知识竞赛考试题库500题(含答案)
- 科学阅读材料(课件)二年级上册科学教科版
- 关于发展乡村产业的建议
- 中国人工智能系列白皮书一元宇宙技术(2024 版)
- 招标代理机构选取技术标投标方案(技术方案)
- 进出口贸易跟供应商签订合同模板
- 提高钻孔灌注桩成孔质量一次验收合格率
评论
0/150
提交评论