




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、1、 由于变频器能适应生产工艺的多方面要求,尤其是在工业自动化控制应用上,交流变频调速技术已经上升为工业自动化控制的主流。交流调速系统的性能已经可以和直流调速系统相匹敌,甚至可以超过直流系统。它采用的全数字控制方式,使信息处理能力大幅度地增强。同时它将实用经验和技巧不断地融入软件功能中,采用模拟控制方式无法实现的复杂控制在今天都已成为可能,使变频器的可靠性、可使用性、可维护性功能得以充实。由于变频器具有调速性能好、调速范围宽和运行效率高,使用操作方便,且宜于同其它设备接口等一系列优点,所以应用越来越广泛。多年来,我们在生产实际应用中不断学习,积累了一些变频器的维护保养和维修的经验。2、维护保养
2、由于电力电子技术和微电子技术的快速发展,变频器改型换代速度也比较快,不断推出新型产品,性能不断提高,功能不断充实、增强。现在国内市场销售的变频器品牌比较多,如Danfoss、ABB、SIEMENS、GE、Schneider等等,国产变频器品牌比较多,虽然种类繁多,但功能及使用上却基本类似。总的来讲,其使用、维护保养及故障处理方法是基本相同的。在实际应用中,变频器受周围的温度、湿度、振动、粉尘、腐蚀性气体等环境条件的影响,其性能会有一些变化。如使用合理、维护得当,则能延长使用寿命,并减少因突然故障造成的生产损失。如果使用不当,维护保养工作跟不上去,就会出现运行故障,导致变频器不能正常工作,甚至造
3、成变频器过早的损坏,而影响生产设备的正常运行。因此日常维护与定期检查是必不可少的。2.1日常维护与检查对于连续运行的变频器,可以从外部目视检查运行状态。定期对变频器进行巡视检查,检查变频器运行时是否有异常现象。通常应作如下检查:(1)环境温度是否正常,要求在-10+40范围内,以25左右为好;(2)变频器在显示面板上显示的输出电流、电压、频率等各种数据是否正常;(3)显示面板上显示的字符是否清楚,是否缺少字符;(4)用测温仪器检测变频器是否过热,是否有异味;(5)变频器风扇运转是否正常,有无异常,散热风道是否通畅;(6)变频器运行中是否有故障报警显示;(7)检查变频器交流输入电压是否超过最大值
4、。极限是418V(380V×1.1),如果主电路外加输入电压超过极限,即使变频器没运行,也会对变频器线路板造成损坏。2.2定期检查利用每年一次的大修时间,将检查重点放在变频器日常运行时无法巡视到的部位。(1)作定期检查时,操作前必须切断电源,变频器停电后待操作面板电源指示灯熄灭后,等待4min(变频器的容量越大,等待时间越长,最长为15min)使得主电路直流滤波电容器充分放电,用万用表确认电容器放电完后,再进行操作。(2)将变频器控制板、主板拆下,用毛刷、吸尘器清扫变频器线路板及内部IGBT模块、输入输出电抗器等部位。线路板脏污的地方,应用棉布沾上酒精或中性化学剂擦除。(3)检查变频
5、器内部导线绝缘是否有腐蚀过热的痕迹及变色或破损等,如发现应及时进行处理或更换。(4)变频器由于振动、温度变化等影响,螺丝等紧固部件往往松动,应将所有螺丝全部紧固一遍。(5)检查输入输出电抗器、变压器等是否过热,变色烧焦或有异味。(6)检查中间直流回路滤波电解电容器小凸肩(安全阀)是否胀出,外表面是否有裂纹、漏液、膨胀等。一般情况下滤波电容器使用周期大约为5年,检查周期最长为一年,接近寿命时,检查周期最好为半年。电容器的容量可用数字电容表测量,当容量下降到额定容量的80%以下时,应予更换。(7)检查冷却风扇运行是否完好,如有问题则应进行更换。冷却风扇的寿命受限于轴承,根据变频器运行情况需要23年
6、更换一次风扇或轴承。检查时如发现异常声音、异常振动,同样需要更换。(8)检查变频器绝缘电阻是否在正常范围内(所有端子与接地端子),注意不能用兆欧表对线路板进行测量,否则会损坏线路板的电子元器件。(9)将变频器的R、S、T端子和电源端电缆断开,U、V、W端子和电机端电缆断开,用兆欧表测量电缆每相导线之间以及每相导线与保护接地之间的绝缘电阻是否符合要求,正常时应大于1M。(10)变频器在检修完毕投入运行前,应带电机空载试运行几分钟,并校对电机的旋转方向。2.3变频器本身的保护:变频器本身具有各种保护功能,如:负载侧接地保护、短路保护、电流限制、逆变器过热、过载等,其自诊断功能、报警警告功能也特别完
7、善。了解这些功能对于正确使用变频器及故障查找是非常重要的。3、故障判断及处理该公司Danfoss变频器在使用中因受环境条件等因素的影响而陆续出现一些故障现象,在维修过程中,笔者积累了一些故障判断和处理经验。下面以Danfoss变频器为例作一介绍:当变频器出现故障时,保护功能动作,变频器立即跳闸,电机由运行状态到停止,报警指示红色发光二极管变亮,液晶显示部分提示报警信息代码或故障内容。这时可以根据信息代码来分析判断变频器的故障范围,如果是软性故障,可将变频器进行断电复位。如还不能恢复正常,只能采用手动或自动初始化,初始化正常后按照参数表重新将数据输入设定。这样,变频器就可以在故障较轻的情况下恢复
8、正常使用。若经以上操作后变频器仍不正常,就要根据故障现象来检查变频器损坏的部位,更换元器件或电路板。故障查找时必须按变频器的提示顺序进行。例如:(1)故障代码36,提示为主电源故障,则三相整流桥模块可能击穿短路或开路。(2)故障代码14,提示接地故障,可用兆欧表检查电机绕组、查看电缆绝缘是否损坏。(3)故障代码37,提示逆变器故障,则IGBT模块可能击穿短路。IGBT模块短路,主回路熔断器也将熔断。当IGBT模块某一相门极损坏时,变频器会出现过流保护现象,这时应对IGBT模块进行检查。变频器运行时,如频繁出现限流报警或过流保护,应检查负载部分以及变频器IGBT模块是否正常,如正常,则此故障为变
9、频器主板霍尔磁补偿式电流传感器损坏。霍尔磁补偿式电流传感器是一种测量正弦与非正弦周期量的电流值,能真实反映电流的波形,给变频器提供一个控制与保护信号。变频器上使用的该元件大部分为瑞士LEM公司LA系列的产品,其LA系列霍尔磁补偿式电流传感器可分为三端引出脚和五端引出脚两种。变频器容量不同,主板上LA系列霍尔磁补偿式电流传感器规格也不相同。生产运行表明,粘胶纤维生产现场含硫化氢的腐蚀性气体会给变频器电路板的电子元器件带来相当大的危害,我们通过给电气控制室送正压新鲜风来改善环境条件,并采用乐泰电子线路板用喷涂胶,对变频器线路板表面作防腐涂层处理,有效地降低了变频器的故障率,提高了使用寿命。电子元器
10、件对静电是非常敏感的,如被静电放电破坏后,将造成电子元器件软击穿,软击穿会导致线路板无法正常工作。所以在更换线路板时必须注意,一定要确保工作之前戴好接地手环,将腕带直接接地,确保人体处于零电位,以防止人体的静电对线路板造成损坏。如没有接地手环,在更换线路板时可用手摸一下变频器金属外壳,使人体的静电通过变频器外壳放掉(其金属外壳导静电)。为确保变频器线路板备件的安全,在保管期间,应放在有防静电材料的袋中存放。4、元器件好坏的简易测试法在维修过程中,根据故障情况要用万用表来检测电子元器件的好坏,如测量方法不正确就很可能导致误判断,这将给维修工作造成困难,甚至造成不必要的经济损失。测量方法分为元器件
11、测试和线路板在路测试两种方式。在路测试:断开变频器电源,在不拆动线路板元器件的条件下,测量线路板上的元器件。对于元器件击穿、短路、开路性故障,这种检测方法可以方便快捷的查找出损坏的元器件,但还应考虑线路板上所测元器件与其并联的元器件对测量结果所产生的影响,以免造成误判断错误。下面介绍元器件好坏的判断方法:4.1普通二极管的检测用MF47型万用表测量,将红、黑表笔分别接在二极管的两端,读取读数,再将表笔对调测量。根据两次测量结果判断,通常小功率锗二极管的正向电阻值为300500,硅二极管约为1k或更大些。锗管反相电阻为几十千欧,硅管反向电阻在 500k以上(大功率二极管的数值要小的多)。好的二极
12、管正向电阻较低,反向电阻较大,正反向电阻差值越大越好。如果测得正、反向电阻很小均接近于零,说明二极管内部已短路;若正、反向电阻很大或趋于无穷大,则说明管子内部已断路。在这两种情况下二极管就需报废。在路测试:测试二极管PN结正反向电阻,比较容易判断出二极管是击穿短路还是断路。4.2三极管检测将数字万用表拨到二极管档,用表笔测PN结,如果正向导通,则显示的数字即为PN结的正向压降。先确定集电极和发射极;用表笔测出两个PN结的正向压降,压降大的是发射极e,压降小的是集电极c。在测试两个结时,红表笔接的是公共极,则被测三极管为NPN型,且红表笔所接为基极b;如果黑表笔接的是公共极,则被测三极管是PNP
13、型,且此极为基极b。三极管损坏后PN结有击穿短路和开路两种情况。在路测试:在路测试三极管,实际上是通过测试PN结的正、反向电阻,来达到判断三极管是否损坏。支路电阻大于PN结正向电阻,正常时所测得正、反向电阻应有明显区别,否则PN结损坏了。支路电阻小于PN结正向电阻时,应将支路断开,否则就无法判断三极管的好坏。4.3三相整流桥模块检测以SEMIKRON(西门子)整流桥模块为例,如附图所示。将数字万用表拨到二极管测试档,黑表笔接COM,红表笔接V,用红、黑两表笔先后测3、4、5相与2、1极之间的正反向二极管特性,来检查判断整流桥是否完好。所测的正反向特性相差越大越好;如正反向为零,说明所检测的一相
14、已被击穿短路;如正反向均为无穷大,说明所检测的一相已经断路。整流桥模块只要有一相损坏,就应更换。4.4逆变器IGBT模块检测将数字万用表拨到二极管测试档,测试IGBT模块C1.E1、C2.E2之间以及栅极G与E1、E2之间正反向二极管特性,来判断IGBT模块是否完好。以德国eupec25A/1200V六相IGBT模块为例,(参见附图)。将负载侧U、V、W 相的导线拆除,使用二极管测试档,红表笔接P(集电极C1),黑表笔依次测U、V、W(发射极E1),万用表显示数值为最大;将表笔反过来,黑表笔接P,红表笔测U、V、W,万用表显示数值为400左右。再将红表笔接N(发射极E2),黑表笔测U、V、W,
15、万用表显示数值为400左右;黑表笔接N,红表笔测U、V、W(集电极C2),万用表显示数值为最大。各相之间的正反向特性应相同,若出现差别说明IGBT模块性能变差,应予更换。IGBT模块损坏时,只有击穿短路情况出现。红、黑两表笔分别测栅极G与发射极E之间的正反向特性,万用表两次所测的数值都为最大,这时可判定IGBT模块门极正常。如果有数值显示,则门极性能变差,此模块应更换。当正反向测试结果为零时,说明所检测的一相门极已被击穿短路。门极损坏时电路板保护门极的稳压管也将击穿损坏。4.5电解电容器的检测用MF47型万用表测量时,应针对不同容量的电解电容器选用万用表合适的量程。根据经验,一般情况下,47F
16、以下的电解电容器可用R×1K档测量,大于47F的电解电容器可用R×100档测量。将万用表红表笔接电容器负极,黑表笔接正极,在刚接触的瞬间,万用表指针即向右偏转较大幅度,接着逐渐向左回转,直到停在某一位置(返回无穷大位置)。此时的阻值便是电解电容器的正向漏电阻。此值越大,说明漏电流越小,电容器性能越好。然后,将红、黑表笔对调,万用表指针将重复上述摆动现象。但此时所测阻值为电解电容器的反相漏电阻,此值略小于正向漏电阻。即反相漏电流比正向漏电流要大。实际使用经验表明,电解电容器的漏电阻一般应在几百千欧以上,否则将不能正常工作。在测试中,若正向、反相均无充电现象,即表针不动,则说明
17、电容器容量消失或内部短路;如果所测阻值很小或为零,说明电容器漏电大或已击穿损坏,不能再使用。在路测试:在路测试电解电容器只宜检查严重漏电或击穿的故障,轻微漏电或小容量电解电容器测试的准确性很差。在路测试还应考虑其它元器件对测试的影响,否则读出的数值就不准确,会影响正常判断。电解电容器还可以用电容表来检测两端之间的电容值,以判断电解电容器的好坏。4.6电感器和变压器简易测试(1)电感器的测试用MF47型万用表电阻档测试电感器阻值的大小。若被测电感器的阻值为零,说明电感器内部绕组有短路故障。注意操作时一定要将万用表调零,反复测试几次。若被测电感器阻值为无穷大,说明电感器的绕组或引出脚与绕组接点处发
18、生了断路故障。(2)变压器的简易测试绝缘性能测试:用万用表电阻档R×10K分别测量铁心与一次绕组、一次绕组与二次绕组、铁心与二次绕组之间的电阻值,应均为无穷大。否则说明变压器绝缘性能不良。测量绕组通断:用万用表R×1档,分别测量变压器一次、二次各个绕组间的电阻值,一般一次绕组阻值应为几十欧至几百欧,变压器功率越小电阻值越大;二次绕组电阻值一般为几欧至几百欧,如某一组的电阻值为无穷大,则该组有断路故障注意:这种测量方法只是一种比较粗略的估测,有些绕组匝间绝缘轻微短路的变压器是检测不准的。4.7电阻器的阻值简易测试在路测量电阻时要切断线路板电源,要考虑电路中的其它元器件对电阻值
19、的影响。如果电路中接有电容器,还必须将电容器放电。万用表表针应指在标度尺的中心部分,读数才准确。4.8贴片式元器件(1)贴片式元器件种类变频器电子线路板现在大部分采用贴片式元器件也称为表面组装元器件,它是一种无引线或引线很短的适于表面组装的微小型电子元器件。贴片式元器件品种规格很多,按形状分可分为矩形、圆柱形和异形结构。按类型可分为片式电阻器、片式电容器、片式电感器、片式半导体器件(可分为片式二极管和片式三极管)、片式集成电路。(2)贴片式元器件的拆、焊用35W内热式电烙铁,配长寿命耐氧化尖烙铁头。将烙铁头上粘的残留物擦干净,仅剩有一层薄薄的焊锡。两端器件的贴片式元器件拆卸、焊接操作比较容易。
20、贴片式集成电路引脚细且多、引脚间距小,周围元器件排列紧凑,拆装不易。它们的拆卸和焊接,在没有专用工具的条件下是有一定难度的,在此着重介绍贴片式集成电路的拆卸、焊接操作。(3)拆卸方法如已判断出集成电路块损坏,用裁纸刀将引脚齐根切断,取下集成电路块。注意切割时刀头不要切到线路板上。然后,用镊子夹住断脚,用尖头烙铁溶化断脚上的焊锡,将断脚逐一取下。(4)焊接方法焊接前,先用酒精将拆掉集成电路块的线路板铜萡上的多余焊锡及脏东西清理干净,将集成电路块的引脚涂上酒精松香水,并将引脚搪上一层薄锡。然后,核对好集成电路引脚位置,将集成电路块放在待焊的线路板上,轻压集成电路块,用电烙铁先焊集成电路块四个角上的
21、引脚,将集成电路块固定好,再逐一对其它各引脚进行焊接。为了保证焊接质量,焊接时,最好使用细一些的焊锡丝,如0.6焊锡丝,焊出来的效果好一些。5、结束语变频器的维修工作是一项理论知识、实践经验与操作水平的结合的工作,其技术水平代表着变频器的维修质量。所以我们要经常阅读一些有关的书报杂志,不断了解这些电子元器件所具备的功能和特点,开拓思路,给维修工作以启迪,并将这些学到的知识应用于实际工作中,解决一些维修过程中无法解决的问题,以使自己的技术水平不断提高。变频器是运动控制系统中的功率变换器-变频发展分析变频器是运动控制系统中的功率变换器。当今的运动控制系统是包含多种学科的技术领域,总的发展趋势是:驱
22、动的交流化,功率变换器的高频化,控制的数字化、智能化和网络化。因此,变频器作为系统的重要功率变换部件,提供可控的高性能变压变频的交流电源而得到迅猛发展。经历大约30年的研发与应用实践,随着新型电力电子器件和高性能微处理器的应用以及控制技术的发展,变频器的性能价格比越来越高,体积越来越小,而厂家仍然在不断地提高可靠性实现变频器的进一步小型轻量化、高性能化和多功能化以及无公害化而做着新的努力。变频器性能的优劣,一要看其输出交流电压的谐波对电机的影响,二要看对电网的谐波污染和输入功率因数,三要看本身的能量损耗(即效率)如何?这里仅以量大面广的交直交变频器为例,阐述它的发展趋势:1、主电路功率开关元件
23、的自关断化、模块化、集成化、智能化,开关频率不断提高,开关损耗进一步降低。2、变频器主电路的拓扑结构方面:变频器的网侧变流器对低压小容量的装置常采用6脉冲变流器,而对中压大容量的装置采用多重化 12脉冲以上的变流器。负载侧变流器对低压小容量装置常采用两电平的桥式逆变器,而对中压大容量的装置采用多电平逆变器。对于四象限运行的传动,为实现变频器再生能量向电网回馈和节省能量,网侧变流器应为可逆变流器,同时出现了功率可双向流动的双PWM变频器,对网侧变流器加以适当控制可使输入电流接近正弦波,减少对电网的公害。目前,低、中压变频器都有这类产品。3、脉宽调制变压变频器的控制方法可以采用正弦波脉宽调制(SP
24、WM)控制、消除指定次数谐波的PWM控制、电流跟踪控制、电压空间矢量控制(磁链跟踪控制)。4、交流电动机变频调整控制方法的进展主要体现在由标量控制向高动态性能的矢量控制与直接转矩控制发展和开发无速度传感器的矢量控制和直接转矩控制系统方面。5、微处理器的进步使数字控制成为现代控制器的发展方向:运动控制系统是快速系统,特别是交流电动机高性能的控制需要存储多种数据和快速实时处理大量信息。近几年来,国外各大公司纷纷推出以DSP(数字信号处理器)为基础的内核,配以电机控制所需的外围功能电路,集成在单一芯片内的称为DSP单片电机控制器,价格大大降低,体积缩小,结构紧凑,使用便捷,可靠性提高。DSP和普通的
25、单片机相比,处理数字运算能力增强1015倍,以确保系统有更优越的控制性能。数字控制使硬件简化,柔性的控制算法使控制具有很大的灵活性,可实现复杂控制规律,使现代控制理论在运动控制系统中应用成为现实,易于与上层系统连接进行数据传输,便于故障诊断加强保护和监视功能,使系统智能化(如有些变频器具有自调整功能)。6、交流同步电动机已成为交流可调传动中的一颗新星,特别是永磁同步电动机,电机获得无刷结构,功率因数高,效率也高,转子转速严格与电源频率保持同步。同步电机变频调速系统有他控变频和自控变频两大类。自控变频同步电机在原理上和直流电机极为相似,用电力电子变流器取代了直流电机的机械换向器,如采用交直交变压
26、变频器时叫做“直流无换向器电机”或称“无刷直流电动机(BLDC)”。传统的自控变频同步机调速系统有转子位置传感器,现正开发无转子位置传感器的系统。同步电机的他控变频方式也可采用矢量控制,其按转子磁场定向的矢量控制比异步电机简单。2、 变频器的常见故障 变频器在工农业生产中有着广泛的应用。笔者针对变频器的一些常见故障做一个小结,希望在今后的变频器维护工作中能够给大家提供一些帮助。常见的故障如下。1 过电流跳闸过电流是变频器报警最为频繁的现象。常常是通电就跳,这种现象一般不能复位,主要原因有:模块损坏、驱动电路损坏、电流检测电路损坏。重新启动时,一升速就跳闸。主要原因有负载侧
27、短路;机械卡住、逆变管损坏、电动机启动转矩小、拖动系统转不起来。重新启动时并不立即跳闸,而是在运行过程(包括升速和降速运行)中跳闸,可能的原因:升速时间设定太短;降速时间设定太短;转矩补偿(U/F比)设定较大,引起低频时空载电流过大;电子热继电器整定不当,动作电流设定得太小,引起误动作。如一台 LG-IS3-4 3.7 kW变频器一启动就跳“OC”。打开机盖没有发现任何烧坏的迹象,在线测量 IGBT(7MBR25NF-120)基本没有问题,为进一步判断问题,把IGBT拆下后测量7个单元的大功率晶体管开通与关闭都很好。在测量上半桥的驱动电路时发现有一路与其他两路有明显区别,经仔细检查发现一只光耦
28、A3120输出脚与电源负极短路,更换后三路基本一样,模块装上通电运行一切良好。又如一台BELTRO-VERT 2.2 kW变频器通电就跳“OC”,且不能复位。首先检查逆变模块,没有发现问题,其次检查驱动电路也没有异常现象,估计问题出在过电流信号处理这一部位,将其电路传感器拆掉后通电,显示一切正常,故认为传感器已坏,找一新品换上后,带负载一切正常。2 过电压跳闸引起过电压跳闸的主要原因:电源电压过高;降速时间设定太短;降速过程中再生制动的放电单元工作不理想,包括来不及放电(应增加外接制动电阻和制动单元)和放电支路发生故障,实际并不放电。如一台安N2系列3.7 kW变频器在停机时跳“OU”。在修这
29、台机器之前,首先应清楚“OU”报警的原因何在,这是因为变频器在减速时,电动机转子绕组切割旋转磁场的速度加快,转子的电动势和电流增大,使电机处于发电状态,回馈的能量通过逆变环节中的二极管流向直流环节,使直流母线电压升高所致,所以应该着重检查制动回路,测量放电电阻没有发现问题,再测量制动管(ET191)时发现已击穿,更换后通电运行,且快速停车都没有问题。3 欠电压跳闸引起欠电压跳闸的原因:电源电压过低;电源缺相;整流桥故障。如一台CT 18.5 kW变频器通电跳“Uu”。经检查这台变频器的整流桥充电电阻都是好的,但是通电后没有听到接触器动作,因为这台变频器的充电回路不是利用可控硅,而是靠接触器的吸
30、合来完成充电过程的,因此认为故障可能出在接触器或控制回路以及电源部分。拆掉接触器单独加24 V直流电,接触器工作正常。继而检查24 V直流电源,经仔细检查,该电压是经过LM7824稳压管稳压后输出的,测量该稳压管已损坏,找一新品更换后通电工作正常。又如一台DANFOSS VLT5004 变频器,通电显示正常,但是加负载后跳“ DC LINK UNDERVOLT”(直流回路电压低)。该变频器同样也是通过充电回路的接触器来完成充电过程的,通电时没有发现任何异常现象,估计是加负载时直流回路的电压下降所引起,而直流回路的电压又是通过整流桥全波整流,然后由电容平波后提供的,所以应着重检查整流桥,经测量发
31、现该整流桥有一路桥臂开路,更换新品后问题得到解决。4 过热过热也是一种比较常见的故障,产生的主要原因有周围温度过高、风机堵转、温度传感器性能不良、电机过热等。在夏季如果变频器操作室的制冷、通风效果不良,环境温度升高,则经常发生过热保护跳停。这时应检查变频器内部的风扇是否损坏,操作室温度是否偏高,应采取措施进行强制冷却,保证变频器安全度夏。5 输出不平衡输出不平衡一般表现为电机抖动,转速不稳,产生的主要原因有模块损坏、驱动电路损坏、电抗器损坏等。如一台富士 G9S 11 kW变频器,输出电压相差100 V左右。打开机器初步在线检查,没有发现逆变模块(6MBI50N-120)有问题,测量六路驱动电
32、路也没发现故障,将其模块拆下测量,发现大功率晶体管不能正常导通和关闭,该模块已经损坏。6 过载过载也是变频器跳动比较频繁的故障之一,平时看到过载现象,维修人员应首先分析到底是电机过载还是变频器自身过载,一般来讲电机由于过载能力较强,只要变频器参数表的电机参数设置得当,一般不会出现电机过载。而变频器本身由于过载能力较差很容易出现过载报警,可以检测变频器输出电压。7 开关电源损坏这是变频器最常见的故障,通常是由于开关电源的负载发生短路造成的。丹佛斯变频器采用了新型脉宽集成控制器UC2844,来调整开关电源的输出,同时UC2844还带有电流检测、电压反馈等功能,当发生无显示、控制端子无电压、DC12
33、V/24V风扇不运转等现象时,维修人员首先应该考虑是否开关电源损坏了。8 SC故障SC故障是安川变频器较常见的故障。IGBT模块损坏,是引起SC故障报警的原因之一,而驱动电路损坏也容易导致SC故障报警。此外,电机抖动,三相电流、电压不平衡,有频率显示却无电压输出,这些现象都有可能是IGBT模块损坏。IGBT模块损坏的原因有多种,首先是外部负载发生故障而导致IGBT模块的损坏,如负载发生短路、堵转等。其次,驱动电路老化也有可能导致驱动波形失真,或驱动电压波动太大而导致IGBT损坏,从而导致SC故障报警。9 限流运行在平时运行中可能会碰到变频器提示电流极限。对于一般的变频器在限流报警出现时不能正常
34、平滑的工作,电压(频率)首先要降下来,直到电流下降到允许的范围,一旦电流低于允许值,电压(频率)会再次上升,从而导致系统的不稳定。变频器采用内部斜率控制,在不超过预定限流值的情况下寻找工作点,控制电机平稳地运行在工作点,并将告警信号反馈给客户,依据告警信息维修人员再去检查负载和电机是否有问题。3、 变频器的应用维护保养及故障处理1由于变频器能适应生产工艺的多方面要求,尤其是在工业自动化控制应用上, 交流变频调速技术已经上升为工业自动化控制的主流。交流调速系统的性能已经可以和直流调速系统相匹敌,甚至可以超过直流系统。它采用的全数字控制方式,使信息处理能力大幅度地增强。同时它将实用经验和技巧不断地
35、融入软件功能中,采用模拟控制方式无法实现的复杂控制在今天都已成为可能,使变频器的可靠性、可使用性、可维护性功能得以充实。由于变频器具有调速性能好、调速范围宽和运行效率高,使用操作方便,且宜于同其它设备接口等一系列优点,所以应用越来越广泛。多年来,我们在生产实际应用中不断学习,积累了一些变频器的维护保养和维修的经验。 2.1日常维护与检查 对于连续运行的变频器,可以从外部目视检查运行状态。定期对变频器进行巡视检查,检查变频器运行时是否有异常现象。通常应作如下检查: (1)环境温度是否正常,要求在-10+40范围内,以25左右为好; (2)变频器在显示面板上
36、显示的输出电流、电压、频率等各种数据是否正常; (3)显示面板上显示的字符是否清楚,是否缺少字符; (4)用测温仪器检测变频器是否过热,是否有异味; (5)变频器风扇运转是否正常,有无异常,散热风道是否通畅; (6)变频器运行中是否有故障报警显示; (7)检查变频器交流输入电压是否超过最大值。极限是418V(380V×1.1),如果主电路外加输入电压超过极限,即使变频器没运行,也会对变频器线路板造成损坏。 2.2定期检查 利用每年一次的大修时间,将检查重点放在变频器日常运行时无法巡视到的部位。 (1)作定
37、期检查时,操作前必须切断电源,变频器停电后待操作面板电源指示灯熄灭后,等待4min(变频器的容量越大,等待时间越长,最长为15min)使得主电路直流滤波电容器充分放电,用万用表确认电容器放电完后,再进行操作。4、 (2)将变频器控制板、主板拆下,用毛刷、吸尘器清扫变频器线路板及内部IGBT模块、输入输出电抗器等部位。线路板脏污的地方,应用棉布沾上酒精或中性化学剂擦除。 (3)检查变频器内部导线绝缘是否有腐蚀过热的痕迹及变色或破损等,如发现应及时进行处理或更换。 (4)变频器由于振动、温度变化等影响,螺丝等紧固部件往往松动,应将所有螺丝全部紧固一遍。 (5)检查输入
38、输出电抗器、变压器等是否过热,变色烧焦或有异味。 (6)检查中间直流回路滤波电解电容器小凸肩(安全阀)是否胀出,外表面是否有裂纹、漏液、膨胀等。一般情况下滤波电容器使用周期大约为5年,检查周期最长为一年,接近寿命时,检查周期最好为半年。电容器的容量可用数字电容表测量,当容量下降到额定容量的80%以下时,应予更换。 (7)检查冷却风扇运行是否完好,如有问题则应进行更换。冷却风扇的寿命受限于轴承,根据变频器运行情况需要23年更换一次风扇或轴承。检查时如发现异常声音、异常振动,同样需要更换。 (8)检查变频器绝缘电阻是否在正常范围内(所有端子与接地端子),注意不能用兆欧
39、表对线路板进行测量,否则会损坏线路板的电子元器件。 (9)将变频器的R、S、T端子和电源端电缆断开,U、V、W端子和电机端电缆断开,用兆欧表测量电缆每相导线之间以及每相导线与保护接地之间的绝缘电阻是否符合要求,正常时应大于1M。 (10)变频器在检修完毕投入运行前,应带电机空载试运行几分钟,并校对电机的旋转方向。 2.3变频器本身的保护: 变频器本身具有各种保护功能,如:负载侧接地保护、短路保护、电流限制、逆变器过热、过载等,其自诊断功能、报警警告功能也特别完善。了解这些功能对于正确使用变频器及故障查找是非常重要的。 3故障判断及处理
40、;Danfoss变频器在使用中因受环境条件等因素的影响而陆续出现一些故障现象,在维修过程中,笔者积累了一些故障判断和处理经验。 下面以Danfoss变频器为例作一介绍:当变频器出现故障时,保护功能动作,变频器立即跳闸,电机由运行状态到停止,报警指示红色发光二极管变亮,液晶显示部分提示报警信息代码或故障内容。这时可以根据信息代码来分析判断变频器的故障范围,如果是软性故障,可将变频器进行断电复位。如还不能恢复正常,只能采用手动或自动初始化,初始化正常后按照参数表重新将数据输入设定。这样,变频器就可以在故障较轻的情况下恢复正常使用。若经以上操作后变频器仍不正常,就要根据故障现象来检查变频器
41、损坏的部位,更换元器件或电路板。故障查找时必须按变频器的提示顺序进行。例如:5、 变频器的应用维护保养及故障处理26、 生产运行表明,粘胶纤维生产现场含硫化氢的腐蚀性气体会给变频器电路板的电子元器件带来相当大的危害,我们通过给电气控制室送正压新鲜风来改善环境条件,并采用乐泰电子线路板用喷涂胶,对变频器线路板表面作防腐涂层处理,有效地降低了变频器的故障率,提高了使用寿命。 电子元器件对静电是非常敏感的,如被静电放电破坏后,将造成电子元器件软击穿,软击穿会导致线路板无法正常工作。所以在更换线路板时必须注意,一定要确保工作之前戴好接地手环,将腕带直接接地,确保人体处于零电位,以防止人体的静
42、电对线路板造成损坏。如没有接地手环,在更换线路板时可用手摸一下变频器金属外壳,使人体的静电通过变频器外壳放掉(其金属外壳导静电)。为确保变频器线路板备件的安全,在保管期间,应放在有防静电材料的袋中存放。 4 元器件好坏的简易测试法 在维修过程中,根据故障情况要用万用表来检测电子元器件的好坏,如测量方法不正确就很可能导致误判断,这将给维修工作造成困难,甚至造成不必要的经济损失。测量方法分为元器件测试和线路板在路测试两种方式。在路测试:断开变频器电源,在不拆动线路板元器件的条件下,测量线路板上的元器件。对于元器件击穿、短路、开路性故障,这种检测方法可以方便快捷的查找出损坏的元器
43、件,但还应考虑线路板上所测元器件与其并联的元器件对测量结果所产生的影响,以免造成误判断错误。下面介绍元器件好坏的判断方法: 4.1普通二极管的检测 用MF47型万用表测量,将红、黑表笔分别接在二极管的两端,读取读数,再将表笔对调测量。根据两次测量结果判断,通常小功率锗二极管的正向电阻值为300500,硅二极管约为1k或更大些。锗管反相电阻为几十千欧,硅管反向电阻在500k以上(大功率二极管的数值要小的多)。好的二极管正向电阻较低,反向电阻较大,正反向电阻差值越大越好。如果测得正、反向电阻很小均接近于零,说明二极管内部已短路;若正、反向电阻很大或趋于无穷大,则说明管子内部已断
44、路。在这两种情况下二极管就需报废。 在路测试:测试二极管PN结正反向电阻,比较容易判断出二极管是击穿短路还是断路。 4.2三极管检测 将数字万用表拨到二极管档,用表笔测PN结,如果正向导通,则显示的数字即为PN结的正向压降。先确定集电极和发射极;用表笔测出两个PN结的正向压降,压降大的是发射极e,压降小的是集电极c。在测试两个结时,红表笔接的是公共极,则被测三极管为NPN型,且红表笔所接为基极b;如果黑表笔接的是公共极,则被测三极管是PNP型,且此极为基极b。三极管损坏后PN结有击穿短路和开路两种情况。 在路测试:在路测试三极管,实际上是通过测试PN结的
45、正、反向电阻,来达到判断三极管是否损坏。支路电阻大于PN结正向电阻,正常时所测得正、反向电阻应有明显区别,否则PN结损坏了。支路电阻小于PN结正向电阻时,应将支路断开,否则就无法判断三极管的好坏。 4.3三相整流桥模块检测 以SEMIKRON(西门子)整流桥模块为例,如附图所示。将数字万用表拨到二极管测试档,黑表笔接COM,红表笔接V,用红、黑两表笔先后测3、4、5相与2、1极之间的正反向二极管特性,来检查判断整流桥是否完好。所测的正反向特性相差越大越好;如正反向为零,说明所检测的一相已被击穿短路;如正反向均为无穷大, 说明所检测的一相已经断路。整流桥模块只要有一相损坏,就
46、应更换。 4.4逆变器IGBT模块检测 将数字万用表拨到二极管测试档,测试IGBT模块C1.E1、C2.E2之间以及栅极G与 E1、E2之间正反向二极管特性,来判断IGBT模块是否完好。7、 8、 附图整流桥模块 来源:输配电设备网9、 以德国eupec 25A/1200V六相IGBT模块为例,(参见附图)。将负载侧U、V、W相的导线拆除,使用二极管测试档,红表笔接P(集电极C1),黑表笔依次測U、V、W(发射极E1),万用表显示数值为最大;将表笔反过来,黑表笔接P,红表笔測U、V、W,万用表显示数值为400左右。再将红表笔接N(发射极E2),黑表笔測
47、U、V、W,万用表显示数值为400左右;黑表笔接N,红表笔測U、V、W(集电极C2),万用表显示数值为最大。各相之间的正反向特性应相同,若出现差别说明IGBT模块性能变差,应予更换。IGBT模块损坏时,只有击穿短路情况出现。 红、黑两表笔分别测栅极G与发射极E之间的正反向特性,万用表两次所测的数值都为最大,这时可判定IGBT模块门极正常。如果有数值显示,则门极性能变差,此模块应更换。当正反向测试结果为零时,说明所检测的一相门极已被击穿短路。门极损坏时电路板保护门极的稳压管也将击穿损坏。 4.5电解电容器的检测 用MF47型万用表测量时,应针对不同容量的电解电容器选
48、用万用表合适的量程。根据经验,一般情况下,47F以下的电解电容器可用R×1K档测量,大于47F的电解电容器可用R×100档测量。 将万用表红表笔接电容器负极,黑表笔接正极,在刚接触的瞬间,万用表指针即向右偏转较大幅度,接着逐渐向左回转,直到停在某一位置(返回无穷大位置)。此时的阻值便是电解电容器的正向漏电阻。此值越大,说明漏电流越小,电容器性能越好。然后,将红、黑表笔对调,万用表指针将重复上述摆动现象。但此时所测阻值为电解电容器的反相漏电阻,此值略小于正向漏电阻。即反相漏电流比正向漏电流要大。实际使用经验表明,电解电容器的漏电阻一般应在几百千欧以上,否则将不能正常
49、工作。在测试中,若正向、反相均无充电现象,即表针不动,则说明电容器容量消失或内部短路;如果所测阻值很小或为零,说明电容器漏电大或已击穿损坏,不能再使用。 在路测试:在路测试电解电容器只宜检查严重漏电或击穿的故障,轻微漏电或小容量电解电容器测试的准确性很差。在路测试还应考虑其它元器件对测试的影响,否则读出的数值就不准确,会影响正常判断。电解电容器还可以用电容表来检测两端之间的电容值,以判断电解电容器的好坏。 4.6电感器和变压器简易测试10、 变频器的应用维护保养及故障处理311、 (1)电感器的测试 用MF47型万用表电阻档测试电感器阻值的大小。若被测电感器的阻值
50、为零,说明电感器内部绕组有短路故障。注意操作时一定要将万用表调零,反复测试几次。若被测电感器阻值为无穷大,说明电感器的绕组或引出脚与绕组接点处发生了断路故障。 (2)变压器的简易测试 绝缘性能测试:用万用表电阻档R×10K分别测量铁心与一次绕组、一次绕组与二次绕组、铁心与二次绕组之间的电阻值,应均为无穷大。否则说明变压器绝缘性能不良。 测量绕组通断:用万用表R×1档,分别测量变压器一次、二次各个绕组间的电阻值,一般一次绕组阻值应为几十欧至几百欧,变压器功率越小电阻值越大;二次绕组电阻值一般为几欧至几百欧,如某一组的电阻值为无穷大,则该组有断路故
51、障 注意:这种测量方法只是一种比较粗略的估测,有些绕组匝间绝缘轻微短路的变压器是检测不准的。 4.7电阻器的阻值简易测试 在路测量电阻时要切断线路板电源,要考虑电路中的其它元器件对电阻值的影响。如果电路中接有电容器,还必须将电容器放电。万用表表针应指在标度尺的中心部分,读数才准确。 4.8贴片式元器件 来源: (1)贴片式元器件种类 变频器电子线路板现在大部分采用贴片式元器件也称为表面组装元器件,它是一种无引线或引线很短的适于表面组装的微小型电子元器件。贴片式元器件品种规格很多,按形状分可分为矩形、圆柱形和异形结构。按类型可
52、分为片式电阻器、片式电容器、片式电感器、片式半导体器件(可分为片式二极管和片式三极管)、片式集成电路。 (2)贴片式元器件的拆、焊 用35W内热式电烙铁,配长寿命耐氧化尖烙铁头。将烙铁头上粘的残留物擦干净,仅剩有一层薄薄的焊锡。两端器件的贴片式元器件拆卸、焊接操作比较容易。贴片式集成电路引脚细且多、引脚间距小,周围元器件排列紧凑,拆装不易。它们的拆卸和焊接,在没有专用工具的条件下是有一定难度的,在此着重介绍贴片式集成电路的拆卸、焊接操作。 (3)拆卸方法 如已判断出集成电路块损坏,用裁纸刀将引脚齐根切断,取下集成电路块。注意切割时刀头不要切到线路板上。然
53、后,用镊子夹住断脚,用尖头烙铁溶化断脚上的焊锡,将断脚逐一取下。 (4)焊接方法 焊接前,先用酒精将拆掉集成电路块的线路板铜萡上的多余焊锡及脏东西清理干净,将集成电路块的引脚涂上酒精松香水,并将引脚搪上一层薄锡。然后,核对好集成电路引脚位置,将集成电路块放在待焊的线路板上,轻压集成电路块,用电烙铁先焊集成电路块四个角上的引脚,将集成电路块固定好,再逐一对其它各引脚进行焊接。为了保证焊接质量,焊接时,最好使用细一些的焊锡丝,如0.6焊锡丝,焊出来的效果好一些。 5结束语 变频器的维修工作是一项理论知识、实践经验与操作水平的结合的工作,其技术水平代表着变频器
54、的维修质量。所以我们要经常阅读一些有关的书报杂志,不断了解这些电子元器件所具备的功能和特点,开拓思路,给维修工作以启迪,并将这些学到的知识应用于实际工作中,解决一些维修过程中无法解决的问题,以使自已的技术水平不断提高。12、 (1)故障代码36,提示为主电源故障,则三相整流桥模块可能击穿短路或开路。 (2)故障代码14,提示接地故障,可用兆欧表检查电机绕组、查看电缆绝缘是否损坏。 (3)故障代码37,提示逆变器故障,则IGBT模块可能击穿短路。IGBT模块短路,主回路熔断器也将熔断。当IGBT模块某一相门极损坏时,变频器会出现过流保护现象,这时应对IGBT模块进行检查。
55、160;变频器运行时,如频繁出现限流报警或过流保护,应检查负载部分以及变频器IGBT模块是否正常,如正常,则此故障为变频器主板霍尔磁补偿式电流传感器损坏。霍尔磁补偿式电流传感器是一种测量正弦与非正弦周期量的电流值,能真实反映电流的波形,给变频器提供一个控制与保护信号。变频器上使用的该元件大部分为瑞士LEM公司LA系列的产品,其LA系列霍尔磁补偿式电流传感器可分为三端引出脚和五端引出脚两种。变频器容量不同,主板上LA系列霍尔磁补偿式电流传感器规格也不相同。13、 变频器的使用环境:包括电网环境、使用环境二大类。一、电网环境: 电网环境里又包括供电电压,浪涌。两大类。1、供电电压:变频
56、器的输入电压范围一般-15% 至 +10%。即:340420V 之间,并且电压要稳定。波动小。各厂家的标准有出入。那么变频器内直流母线电压经过整流滤波后,其峰值电压是537V左右。即:(380X1.414)。另外还有一个公式是:(380VX1.35=513V)是满载运行的实际值! 里面经整流滤波后的直流母线电压的工作范围大概也就是480-594V。虽然变频器里有保护功能,但是如果变频器总是处于保护范围的临界边缘电压上工作,会大大缩短变频器的寿命。此外,还会随着季节、白天、黑天,出现不同的奇怪的保护动作。因此,我们尽量让变频器工作在合适的中等输入电压上为盼。这一点我们知道就行了。平时
57、要密切关注!2、浪涌:浪涌是危害变频器的大敌。在同一线路上有多个变频器在工作,这条线路上应避免安装大功率的用电设备,如直接起 动的大功率电机、电锤、电焊机等。同一线路上,有多台平稳连续工作的中小功率变频器在工作,这条线路上应尽量不安装大 功率的而且是频繁起动的变频器,因为泿踊会对这些变频患有严重的危害!尽量把频繁起动的大功率变频器与别的变频器线路分开,用另一条共电电路!各种变频器尽量把线路均分开。电容投放柜虽然能够使电网稳定,消除无功功率,提高有功功率。但是不要离变频器群很近。因为会产生泿踊。可以在变频器输入端加上
58、变频器吸收滤波器或输入电抗器。(较贵)100KW以上的,应该必须加电抗器!以上这些,是造成浪涌产生的机会比较多的原因。曾遇见7台拉丝机变频器用一条线路,出现前6台开起来正常,但第7台想开开运转时,竟然全部停止,后来将第7台变频器改到另一条线路上,一切OK!二、使用环境: 使用环境包括:潮湿、环境温度、粉尘、雷电、震动。等等。 1、潮湿:潮湿的环境会使变频器电路板造成短路的危害,促使变频器内的六路信号变得异常。该轮流导通的不轮流导通了,上下臂一起导通,就会引起IGBT炸机。一定要做好防护措施,不能让变频器进入任何液体!不得大意。 记得我接手一台变频器,合不上闸,一合
59、就跳!检查呢?并没有发现有问题,静态测量完好!该机是一体化的IGBT。整流桥包括在里面,决定换掉IGBT!当拆下IGBT时发现了故障的瘾患!原来是IGBT的直流输入的530V电极间,因受潮引起了电火花,起初肯定是小火花,随着时间延长,那正负极的530V高压互相的勾心逗脚,越来越近,最后把电路板打通一条沟,这条沟,就形成了碳化,为530V正负极的火花打通了一条“绿色的通道”!当一合闸时,火花就一帆风顺的通过“绿色通道”相互沟通,使电流短路,引起跳闸!你在断电测量时,就什么也测不出来啦!这种故障,你根本就看不到、测不出。因为前有电路板挡着你的视线,后有IGBT挡着你的视线!不上电火花又不出来光顾!很容易走弯路,真乃难断!2、环境温度:环境温度一般在 -10度42度左右为谊。这和我们人一样,超出这个温度范围
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 采购灶具合同范本
- 小企业租赁合同范本
- 商贸食品销售合同范本
- 保时捷售车合同范本
- 租赁合同范本违约约定
- 医用耗材寄售合同范本
- 第26讲 与圆有关的计算 2025年中考数学一轮复习讲练测(广东专用)
- 2025股权转让合同 有限责任公司股权转让协议
- 雇佣牛倌合同范本
- 2025标准租房合同模板CC
- 《湿地资源资产评估和资源核算技术规范》报批稿及编制说明
- 水平垂直运输专项方案
- (正式版)SHT 3227-2024 石油化工装置固定水喷雾和水(泡沫)喷淋灭火系统技术标准
- 2023年4月自考02331数据结构试题及答案含解析
- CIE1931-色坐标-三刺激值
- 银行客户经营策略分析报告总结
- 唇部整形美容手术知情同意书
- 如何进行ESG评级
- 建模师的职业规划书
- 中智人力测评题库答案
- 水利水电工程施工环境保护措施
评论
0/150
提交评论