六点定位法则的正确理解与应用_第1页
六点定位法则的正确理解与应用_第2页
六点定位法则的正确理解与应用_第3页
六点定位法则的正确理解与应用_第4页
六点定位法则的正确理解与应用_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、六点定位原理一个尚未定位的工件,其空间位置是不确定的,均有六个自由度,如图久4所示,即沿空间坐标轴益y.三个方向的 移动和绕空三个坐标轴的转动(分别以片、F、Z ;和左、 K % Z表不)。cp?Y图3-4工件的六个自由度Z|图3-5长方体形工件的定位定他覷限制自由克如翊册示的长种工件,欲濮完全趟,可戕置那靛点,工件的三个而 分别鸵戦保持搜热在甌而设置三个不共绷点h 2、(M-个耐,酬工件的三个自由度:2-. r b «W4.5 (姑編.MJTfs疣个自由廃颛體-个臥 觀托由處視 工件肪个自由觑都被IM 谜棘限制工件自由軸醸点緬啟支酬确支就,用瓠辆繼个媒勰粗件那自由躺酬,締恋就聽。趟

2、肝菲越廐I”分折工件的趟亦肪主韵下几点(1) 趟支谕制工件揶臓,鋤城如牡件删确咖驰口鵬 噬織去越辄(2) -tmtaRrt自由處-个工做林个自喊 戕酣越棘融目,飙上不据眇 个。分雅战蘇的啟作酣,祥虑力觸札工件韓-自酿線制,并林工件按別麒脱离啟 支非斛帅淞竝外力伽下税酬淑、工件蜿腓肝不艇动,即朕紧也排剧江件的艄自由詡撷制盒刪,掘帙緊题饨念辭縑流、六点定位原则一个尚未定位的工件,其位置是不确定的。如图3-29所示,将未定位的的工件(长方体)放在空间直角坐标系中,长方体可以沿 X、Y、Z轴移动有不同的位置,也可以、 禾口、 表示。合称为工件的六个自由度。其中、称为工件绕X、Y、Z轴的转动自绕X、Y、

3、X轴转动有不同的位置,分别用用以描述工件位置不确定性的 、 称为工件沿X、Y、Z轴的移动自由度, 由度。工件要正确定位首先要限制工件的自由度。设空间有一固定点,长方体的底面与该点 保持接触,那么长方体沿Z轴的移动自由度即被限制了。如果按图3-30所设置六个固定 点,长方体的三个面分别与这些点保持接触,长方体的六个自由度均被限制。其中XOY平面上的呈三角形分布的三点限制了 、三个自由度;YOZ平面内的水平放置的两个点, 限制了、二个自由度;XOZ平面内的一点,限制了 一个自由度。限制三个或三个以上 自由度的称为主要定位基准。图3-30长方体定位时支承点的分布这种用适当分布的六个支承点限制工件六个

4、自由度的原则称为六点定位原则支承点的分布必须适当,否则六个支承点限制不了工件的六个自由度。例图 3-30 中 XOY平面内的三点不应在一直线上,同理,YOZ平面内的两点不应垂直布置。六点定位原则是工件定位的基本法则,用于实际生产时起支承作用的是有一定形状的几何体,这些用 于限制工件自由度的几何体即为定 位元件。表 3-10 为常用定位元件能限制的工件自由 度。«310常用定位元件能限制的二件白由度«310常用定位元件能限制的二件白由度工件定位基而00孔zO定位元件定位简图定位元件 符点限制的刍由度淨1.2,3a z zxy4tSX.7.6y支承柢2Ta A14Zw X.Y3

5、X.Z定位債(心轴;»«(妇心轴)X. ?0长|(长心釉)X. Yz> oX, Y定位元件工件定位基面定位简田定位元件轄点限制的自由度x9 y9锥销fWi I1 固定侑2 活动俏X. y9 Z/> /X. Y外Bl柱面定位姿短套X,X. 2长套亠八X、Z短半圍套长半IB套锥套1 一固定傩套2活动傩套X. ZX. ZX. Zx>Y.支承板或支承钉V形块窄V形块宽V形块X,X. Z、由工件加工要求确定工件应限制的自由度数工件定位时,影响加工精度要求的自由度必须限制;不影响加工精度要求的自由度可 以限制也可以不限制,视具体情况而定。按照工件加工要求确定工件必须限

6、制的自由度是工件定位中应解决的首要问题。例如图3-31所示为加工压板导向槽的示例。由于要求槽深方向的尺寸A 2 ,故要求限制Z方向的移动自由度;由于要求槽底面与C面平行,故绕X轴的转动自由度 和 绕丫轴的转动自由度 要限制;由于要保证槽长A 1 ,故在X方向的移动自由度 要限制; 由于导向槽要在压板的中心,与长圆孔一致,故在丫方向的移动自由度 和绕Z轴的转动 自由度 要限制。这样,在加工导向槽时,六个自由度都应限制。这种六个自由度都被限制 的定位方式称为完全定位。图3-31的导板如在平面磨床上磨平面,要求保证板厚B,同时加工面与底面应平行, 这时,根据加工要求只需限制 、三个自由度就可以了。这

7、种根据零件加工要求实际限 制的自由度少于六个的定位方法称为不完全定位。如工件在某工序加工时,根据零件加工要求应限制的自由度而未被限制的定位方法称 为欠定位。欠定位在零件加工中是不允许出现的。1/ / 图3-32过定位示例如果某一个自由度同时由多于一个的定位元件来限制, 这种定位方式称为过定位或重 复定位。 如图 3-32 所示为一个零件在 自由度上有左右两个支承点限制, 这就产生了过定 位。(三)完全定位和不完全定位工件的六个自由度完全被限制的定位称为完全定位。按加工要求,允许有一个或几个自由 度不被限制的定位称为不完全定位。(四)欠定位和过定位按工序的加工要求,工件应该限制的自由度而未予限制

8、的定位,称为欠定位。在确定工件 定位方案时,欠定位时绝对不允许的。工件的同一自由度背二个或二个以上的支撑点重复 限制的定位,称为过定位。在通常情况下,应尽量避免出现过定位。消除过定位及其干涉 一般有两个途径:其一是改变定位元件的结构,以消除被重复限制的自由度;其二是提高 工件定位基面之间及夹具定位元件工作表面之间的位置精度,以减少或消除过定位引起的 干涉。常用定位元件1) 支承钉 图 2-26 所示为国家标准规定的三种支承钉,其中 A 型多用于精基准面的定位, B 型多用于粗基准面的定位, C 型则多用于工件的侧面定位。2)支承板 图 2-27 所示为国家标准规定的两种支承板,其中 B 型用的

9、较多, A 型由于不利于 排屑,多用于工件的侧面定位。IB型iS 2-27支承板)定位销 定位销的构造如图2-28所示。定位销与工件孔配合部分尺寸公差通常按g6 或 f7确定。圆柱销定位通常限制了工件的两个移动自由度。图228定位稍2-29a。有时工件也当要求孔销配合只在一个方向上限制工件自由度时,可采用菱形销,见图 可用圆锥销定位,见图 2-29b,圆锥销定位限制了工件的三个移动自由度。图2-29菱形销和锥形销)心轴 工件在心轴上定位通常限制了除绕自身轴线转动和沿自身轴线移动以外的四个自由度。图2-30a、b所示为刚性心轴,其中 a为间隙配合心轴;b为过盈配合心轴。除刚性心轴外,在生产中还经

10、常使用弹性心轴(图2-30c)、液塑心轴、自动定心心轴等。这些心轴在定位同时将工件夹紧,使用很方便。图2-31所示为小锥度心轴,这类心轴的定位表面带有很小的锥度, 一般为K = 1 : 10001 : 5000 工作时,工件楔紧在心轴上,靠孔的微小弹性变形而形成的一段接触长度Ik,由此产生的摩擦力带动工件回转,而不需另加夹紧装置。小锥度心轴定心精度高,可达0.005mm0.01mm。a)间隙配合业轴c)弹性心轴b)过盈配合心轴2-30业轴U2-31小锥度心轴)定位套 工件以外圆柱面为基准在夹具中定位主要有两种形式,一种是定心定位,一种是支 承定位。定心定位的定位元件主要是套筒(包括锥套)和卡盘

11、。套筒定位长径比较大时,限制工 件四个自由度(两个移动,两个转动,见图2-32a);套筒定位长径比较小时,只限制工件两个自由度(图2-32b)。使用锥套定位时,通常限制工件三个移动自由度(图2-32C)。a)Sc)12-32定位套工件以外圆表面支承定位时常用的定位元件是V型块。V形块是由两个互成 角的平面组成的定位元件。用V形块定位时,对中性好,装卸工件方便,且可用于非完整外圆表面的定位。用V形块定位也有长短之分,长的 V形块可限制工件四个自由度,而短的(窄的)V形块只能限制两个自由度。形块的尺寸关系如图2-32所示,V形块夹角 有60° 90° 120。三种,其中以90。

12、用得最多。尺寸C和h是加工V形块时所必需的。而最后检验和调整其位置时,则是利用一个直径等于基准面基本尺寸 D的量规,放在V形块上,测量其咼度 H。由图2-33可知:H = h + - 2+ asinI 2当a= 90。时,有:/= ft + 0707£>-03C(2-8)(2-7)S2-33 V型块的尺寸关系典型定位元件的定位分析在实际生产中,工件总是通过定位元件实现其在夹具或机床上的定位。定位元件有多种形式,常用的有支承钉、支承板、定位销、定位套、心轴、V型块等,其中多数已标准化。表2.10给出一些典型定位元件的定位分析,请读者特别注意其限制的自由度。表210 典型定位元件的

13、定位分析工件的定位面定位焙况夹具的定位元件园锥销外V 形 块圆柱面位圆锻面锻顶尖及锻度心轴图示限制自由度定位情况图示限制自由度定位情况图示限制自由度定位情况图示限制自由度定位情况眼制自由度定位情况图示限制自由度定位情况图示限制自由度定位情况图示限制自由度定位悟况图示限制自由度2个支率钉3个支承钉1个支承钉Z<3 YY一块条形支承板二块条形支承板3ffl菱忠销J4d '冷-巾- # Y求'乙N 长柱心轴X,之 X N 短销大平面组合龙,N 短圆柱I轴_pi签 建i之龙厂一块矩形支承饭X工N ,俎N 小锻度心轴*乂 N短血柱销AX, Zz tz长圆柱销V XV Z两段垣凰柱销

14、L、X»之X老长销小平面组合Zblik丄 4短Hl柱吃轴小锥度心轴长圆柱心轴X Z 9X Z一块短v形块X, Z两块短V形块一块长V形块tvZz1 Y :i1L - .p拓玄一个短定位套只,之久 N两个短定位套一个长定位套4$4-§Z1"X, N , X, N锻度心轴MbX* N , XN六点定位法则的正确理解与应用六点定位法则是指导夹具设计的基本原则,已沿用了几十年,但法则本身并不完善,对法则的理解和应用也存在许多混乱之处,因此有必要对六点定位法则进行再探讨。1传统六点定位法则的含义工件定位的实质就是使工件在夹具中占据确定的位置,因此工件的定位问题可转化为在空间

15、直角坐标系中决定刚体坐标位置的问题来讨论。在空间直角坐标系中,刚体具有六个自由度,即沿X、Y、Z轴移动的三个自由度和绕此三轴旋转的三个自由度。用六个合理分布的支承点限制工件的六个自由度, 使工件在夹具中占据正确的位置,称为六点定位法则。人们在阐述六点定位法则时常以图1所示铣不通槽的例子来加以说明:al、a2、a3三个点体现主定位面A,限制X、Y方向的旋转自由度和Z方向的移动自由度;a4、a5两个点体现侧面B, 限制X方向的移动自由度和Z方向的旋转自由度;a6点体现止推面C,限制丫方向的移动 自由度。这样,工件的六个自由度全部被限制,称为完全定位。当然,定位只是保证工件在夹 具中的位置确定,并不

16、能保证在加工中工件不移动, 故还需夹紧。定位和夹紧是两个不同的概 念。图2<H1.2 hl传统六点定位法则存在的问题1. ala6在有的专著中称为六个定位点, 在有的文献中则称为六个支承点,事实上这是两个不同的概念。支承点应是安装在夹具上直接与工件接触的具体定位元件,如支承钉、 支承板、V形块等,在加工过程中它们还要参与平衡切削力、重力、夹紧力等;而定位 点应是一个抽象概念,是指定位方式对自由度的限制。 限制一个自由度称为一个定位点, 与支承点的多少无关。例如,工件直接以平面定位时,应限制三个自由度,只应有三个 定位点,而事实上此时的支承点远不止三个。而且在一些特殊情况下,工件定位时根本

17、 就无具体的支承点,如常见的在车床上用四爪卡盘夹紧工件,用千分表找正,此时并没 有具体的支承点参与定位,工件位置的确定是由千分表来完成的,这种定位方式在无支 承点的情况下同样可以实现定位。2. 六点定位法则源于刚体力学,与夹具设计的实际情况并不完全一致。一方面,夹具和工件均是弹性体,在定位、尤其夹紧时易产生弹性变形;另一方面,定位副之间大多存在 间隙。而传统的六点定位法则忽略了弹性变形和间隙的存在。事实上,弹性变形和间隙 的存在对工件的定位有重要影响。3. 过定位问题是夹具设计和使用中的敏感问题。文献和专著中一般将过定位定义为“几个 定位支承点重复限制同一个自由度, 这种现象称为过定位。 ,

18、在确定工件定位方案时, 一般不能出现过定位”。但事实上在夹具设计和应用中,过定位的情况并不少见,而且 一些过定位夹具使用效果不错。 如图3a所示定位方式,平面限制X、Y方向的旋转自由 度和 Z 方向的移动自由度,芯轴限制 X、 Y 方向的旋转自由度和移动自由度,两种定位 方式重复限制 X、 Y 方向的旋转自由度,按现行的过定位定义属过定位,应避免使用, 但在实际加工中却常用这种定位方式来滚切齿轮,如图 2 所示。因此必须对过定位有一 个准确的解释,以避免在过定位问题上造成混乱。3 对六点定位法则的再探讨在用传统的六点定位法则确定工件定位方案和判断是否属于过定 位时,很多人忽略了定位副误差的影响

19、。 事实上, 夹具和工件的定位面以及定位元件的误差对 定位影响很大。图 3a 所示定位方式虽然属于过定位, 但只要工件和夹具定位面的尺寸、形状、 位置均无误差, 芯轴和端面都能与夹具定位元件的工件表面相吻合, 相互之间对自由度的限制 就不会发生矛盾。显然,这种状态下的定位是成功的,该夹具是可以使用的。故不应简单地根 据自由度被重复限制就判定定位方案属于过定位。如图 3b 所示,当工件定位面存在垂直度误 差时,端面和芯轴对 X、 Y 方向旋转自由度的限制就会发生矛盾。 如按平面定位, 工件应放平; 如按芯轴定位,工件则应垂直。一批工件的内孔和芯轴之间的实际间隙是变化的, 当间隙变化 时则会形成如

20、图 3b、 3c 所示的两种定位情况, 这样工件在夹具中的位置就不确定,导致过定 位。若夹具定位面与芯轴存在垂直度误差,也会产生类似情况。显然,重复限制自由度不一定 会产生过定位,定位副误差才是产生过定位的主要原因。图3由于存在误差而使两种定位方式之间产生矛盾称为干涉。在干涉范围内,若有A、B两种定位方式重复限制某一自由度,设计时必须确定以某一种定位方式为主。如以A方式为主,则发生B方式干涉A方式,应通过合理设计将 B方式的干涉减至最小,确保以 A方式为主进行定位, 反之亦然。如对于图3a所示定位方式,一些夹具设计专著中提出以大端面和短芯轴组合或小 端面和长芯轴组合平改善其定位性能, 认为这种

21、组合方式不存在过定位。 我们认为这种解释是 不严密的。大端面和短芯轴组合或小端面和长芯轴组合可改善定位性能的根本原因是采用了以 一种定位方式为主,减轻了另一种定位方式的干涉,从本质上说,这种改善后的组合方式与大 端面和长芯轴组合方式相比,夹具定位面之间的垂直度误差更小, 从而可满足工件的定位要求, 不会导致过定位。由于定位副误差会改变和影响定位性质,故应尽量减小定位副误差,但夹具制造精度的提高毕竟有一定限度, 而定位副之间的间隙和定位副的弹性变形可在一定程度上 对定位副误差进行补偿,客观上可减轻干涉程度。如图3c、3d所示,在干涉情况下,工件仍可保证以大平面定位为主。当然,配合面的间隙必须满足工件加工精度的要求, 不能任意扩大。 对于弹性变形,变形量在合理范围内波动是不会导致过定位的。可以认为,在定位副误差作用下,两种定位方式重

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论