




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、专业资料初三数学知识整理与重点难点总结I.二次根式的定义和概念:1、 定义:一般地,形如Va(a0)的代数式叫做二次根式。当0时,2a表示a的算数 平方根,20=02、 概念:式子Va(a0)叫二次根式。2(a0)是一个非负数。II.二次根式2d的简单性质和几何意义1)a0 ;2d訣重非负性2) (2d)A2=a(a0)任何一个非负数都可以写成一个数的平方的形式3)V(aA2+bA2)表示平面间两点之间的距离,即勾股定理推论。第21章二次根式知识框图理解并掌握下列结论:(1)是非负数;(2) ; (3专业资料IV.二次根式的乘法和除法1运算法则VaVb=Vab(a0,b0)Va/b=Va /V
2、b(a sb0,)二数二次根之积,等于二数之积的二次根。2共轭因式如果两个含有根式的代数式的积不再含有根式,那么这两个代数式叫做共轭因式,也称互 为有理化根式。V. 二次根式的加法和减法1同类二次根式一般地,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二 次根式叫做同类二次根式。2合并同类二次根式把几个同类二次根式合并为一个二次根式就叫做合并同类二次根式。3二次根式加减时,可以先将二次根式化为最简二次根式,再将被开方数相同的进行合并W. 二次根式的混合运算1确定运算顺序2灵活运用运算定律专业资料3正确使用乘法公式4大多数分母有理化要及时5在有些简便运算中也许可以约分,不
3、要盲目有理化VII.分母有理化分母有理化有两种方法I.分母是单项式如:Va/Vb=VaxVb/VbxVb=Vab/bII.分母是多项式要利用平方差公式b/(Va+ Vb)(Va Vb)= V aVb/aIII.分母是多项式要利用平方差公式b/(Va+ Vb)(Va Vb)= V aVb/a第22章一元二次方程知识框图如1/Va+ Vb=Va V如1/Va+ Vb=Va V专业资料旋转的定义旋转对称中心把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做 旋转对称图形,这个定点叫做 旋转对称中心,旋转的角度叫做 旋转角(旋转角小于0大于360。)也就是说:1中心对称图形: 如果把一
4、个图形绕着某一点旋转180度后能与自身重合,那么我们就说,这个图形成中心对称图形。2中心对称:如果把一个图形绕着某一点旋转180度后能与另一个图形重合,那么我们就说,这两个图形成中心对称。中心对称图形正(2N)边形(N为大于1的正整数),线段,矩形,菱形,圆只是中心对称图形平行四边形等.第24章圆知识框图圆和点的位置关系:以点P与圆0的为例(设P是一点,贝UPO是点到圆心的距离),P在O0夕卜,POr;P在O0上,PO=r;P在O0,POvr。直线与圆有3种位置关系:无公共点为相离;有两个公共点为相交,这条直线叫做圆的割线;圆与直线有唯一公共点为相切,这条直线叫做圆的切线,这个唯一的公共点叫做
5、切点。以直线AB与圆0为例(设0P丄AB于P,贝UPO是AB到圆心的距离):AB与O0相离,POr; 专业资料专业资料AB与OO相切,PO=r;AB与OO相交,POvr。两圆之间有5种位置关系:无公共点的,一圆在另一圆之外叫外离,在之叫含;有唯一公共点的,一圆在另一圆之外叫外切,在之叫切;有两个公共点的叫相交。两圆圆心之间的距离叫做圆心距。两圆的半径分别为R和r,且Rr,圆心距为P:外离PR+r;外切P=R+r;相交R-rvPvR+r;切P=R-r;含PvR-r。圆的平面几何性质和定理一有关圆的基本性质与定理圆的确定:不在同一直线上的三个点确定一个圆。圆的对称性质:圆是轴对称图形,其对称轴是任
6、意一条通过圆心的直线。圆也是中心对称图形,其对称中心是圆心。垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的2条弧。逆定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的2条弧。有关圆周角和圆心角的性质和定理在同圆或等圆中,如果两个圆心角,两个圆周角,两组弧,两条弦,两条弦心距中有一组量相等,那么他们所对应的其余各组量都分别相等。一条弧所对的圆周角等于它所对的圆心角的一半。直径所对的圆周角是直角。90度的圆周角所对的弦是直径。有关外接圆和切圆的性质和定理1一个三角形有唯一确定的外接圆和切圆。外接圆圆心是三角形各边垂直平分线的交点,到三角形三个顶点距离相等;2切圆的圆心是三角形各角平分线
7、的交点,到三角形三边距离相等。专业资料3S三角=1/2*三角形周长*切圆半径4两相切圆的连心线过切点(连心线:两个圆心相连的线段)5圆0中的弦PQ的中点M,过点M任作两弦AB,CD,弦AD与BC分别交PQ于X,Y,贝U M为XY之中点。有关切线的性质和定理圆的切线垂直于过切点的半径;经过半径的一端,并且垂直于这条半径的直线,是这个圆的切线。切线的判定方法:经过半径外端并且垂直于这条半径的直线是圆的切线。切线的性质:(1)经过切点垂直于这条半径的直线是圆的切线。(2)经过切点垂直于切线的直线必经过圆心。(3)圆的切线垂直于经过切点的半径。切线长定理:从圆外一点到圆的两条切线的长相等,那点与圆心的
8、连线平分切线的夹角。有关圆的计算公式1.圆的周长C=2nr=nd 2.圆的面积S=nrA2; 3.扇形弧长l=nnr/4.扇形面积S=冗(只人2-人2)5.圆锥侧面积S=nrl第25章概率初步知识框图专业资料定义与定义表达式一般地,自变量x和因变量y之间存在如下关系:一般式:y=ax2+bx+c(a丰Oa、b、c为常数),则称y为x顶点式:y=a(x-h)2+k交点式(与x轴):y=a(x-x1)(x-x2)重要概念:(a、b、c为常数,a丰0、且 决定函数的开口方向,a0时,开口方向向上,,lal越小开口就越大。)x是自变量,y是x的二次函数x1,x2=- b V (bg4ac)/2a(即一
9、元二次方程求根公式二次函数的图像在平面直角坐标系中作出二次函数可以看出,二次函数的图像是一条永无止境的抛物线。抛物线的性质1.抛物线是 轴对称 图形。对称轴为直线x = -b/2a对称轴与抛物线唯一的交点为抛物线的顶点P。特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)2.抛物线有一个顶点P,坐标为P ( -b/2a,(4ac-b²)/4a )当-b/2a=0时,P在y轴上;当 = b² -4ac=0时,P在x轴上。3.二次项系数a决定抛物线的开口方向和大小。当a0时,抛物线 向上 开口;当av0时,抛物线 向下开口。|a|越大,则抛物线的开口越小。
10、4.一次项系数b和二次项系数a共同决定对称轴的位置。当a与b同号时(即ab0),对称轴在y轴左;因为若对称轴在左边则对称轴也就是-b/2a0,所以b/2a要小于0,所以a、b要异号事实上,b有其自身的几何意义:抛物线与y轴的交点处的该抛物线切线的函数解析式(次函数)的斜率k的值。可通过对二次函数求导得到。5.常数项c决定抛物线与y轴交点。抛物线与y轴交于(0,c)6.抛物线与x轴交点个数A= b²-4ac0时,抛物线与x轴有2个交点。A= b²-4ac=0时,抛物线与x轴有1个交点。A= b²-4acv0时,抛物线与x轴没有交点。X的取值是
11、虚数(x= - bVb²4ac的值的相反数,乘上虚数i,整个式子除以2a)当a0时,函数在x= -b/2a处取得最小值f(-b/2a)=4ac-b²/4a;在x|x-b/2a上是增函数;抛物线的开口向上;函数的值域是y|y4ab²/4a相反不变当b=0时,抛物线的对称轴是y轴,这时,函数是偶函数,解析式变形为y=ax²+c(a丰0)解析式:专业资料第27章相似知识框图相似三角形的认识对应角相等,对应边成比例的两个三角形叫做互为相似形的三角形叫做相似三角形相似三角形的判定方法根据相似图形的特征来判断。(对应边成比例,对应角相
12、等)1.平行于三角形一边的直线(或两边的延长线)和其他两边相交,所构成的三角形与原三角形相似;相似三角形。(similar triangles)。专业资料(这是相似三角形判定的引理,是以下判定方法证明的基础。这个引理的证明方法需要平 行线分线段成比例的证明)专业资料2.如果一个三角形的两个角与另一个三角形的两个角对应相等直角三角形相似判定定理1.斜边与一条直角边对应成比例的两直角三角形相似。2.直角三角形被斜边上的高分成的两个直角三角形与原直角三角形相似,并且分成的两个 直角三角形也相似。射影定理三角形相似的判定定理推论推论一:顶角或底角相等的那个的两个等腰三角形相似。推论二:腰和底对应成比例
13、的两个等腰三角形相似。推论三:有一个锐角相等的两个直角三角形相似。推论四:直角三角形被斜边上的高分成的两个直角三角形和原三角形都相似。推论五:如果一个三角形的两边和其中一边上的中线与另一个三角形的对应部分成比例, 那么这两个三角形相似。推论六:如果一个三角形的两边和第三边上的中线与另一个三角形的对应部分成比例,那么这两个三角形相似。,那么这两个三角形相似;专业资料相似三角形的性质1.相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、切圆半径等)的比等于相似比。2.相似三角形周长的比等于相似比。3.相似三角形面积的比等于相似比的平方。相似三角形的特例能够完全重合的两个三角形叫
14、做全等三角形。(congruent triangles)全等三角形是相似三角形的特例。全等三角形的特征:1.形状完全相同,相似比是k=1。全等三角形一定是相似三角形,而相似三角形不一定是全等三角形。因此,相似三角形包括全等三角形。全等三角形的定义能够完全重合的两个三角形称为全等三角形。(注:全等三角形是相似三角形中的特殊情况)当两个三角形完全重合时,互相重合的顶点叫做对应顶点,互相重合的边叫做对应边,互专业资料相重合的角叫做对应角。由此,可以得出:全等三角形的对应边相等,对应角相等。(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;(2)全等三角形对应边所对的角是对应角,两条
15、对应边所夹的角是对应角;(3)有公共边的,公共边一定是对应边;(4)有公共角的,角一定是对应角;(5)有对顶角的,对顶角一定是对应角;三角形全等的判定公理及推论形具有稳定性的原因。由3可推到1、三组对应边分别相等的两个三角形全等(简称SSS或“边边边”),这一条也说明了三角2、有两边及其夹角对应相等的两个三角形全等(SAS或“边角边”3、有两角及其夹边对应相等的两个三角形全等(ASA或“角边角”4、有两角及一角的对边对应相等的两个三角形全等(AAS或“角角边”5、直角三角形全等条件有:斜边及一直角边对应相等的两个直角三角形全等(HL或“斜边,直角边”)所以,SSS,SAS,ASA,AAS,HL
16、均为判定三角形全等的定理。注意:在全等的判定中,没有AAA和SSA,这两种情况都不能唯一确定三角形的形状。A是英文角的缩写(angle),S是英文边的缩写(side)专业资料全等三角形的性质专业资料1、全等三角形的对应角相等、对应边相等。2、 全等三角形的对应边上的高对应相等。3、 全等三角形的对应角平分线相等。4、 全等三角形的对应中线相等。5、 全等三角形面积相等。6、 全等三角形周长相等。7、 三边对应相等的两个三角形全等。(SSS)8、两边和它们的夹角对应相等的两个三角形全等。(SAS)9、两角和它们的夹边对应相等的两个三角形全等。(ASA)10、两个角和其中一个角的对边对应相等的两个
17、三角形全等。(AAS)11、斜边和一条直角边对应相等的两个直角三角形全等。(HL)全等三角形的运用1、性质中三角形全等是条件,结论是对应角、对应边相等。而全等的判定却刚好相反。2、利用性质和判定,学会准确地找出两个全等三角形中的对应边与对应角是关键。在写两个三角形全等时,一定把对应的顶点,角、边的顺序写一致,为找对应边,角提供方便。3,当图中出现两个以上等边三角形时,应首先考虑用SAS找全等三角形。第28章锐角三角函数专业资料知识框图第29章投影与视图知识框图中尤哉影*投影平行丸涯物体 (立体图形)由WT向后看平行投影尢战垂直授翳面II1三视图俯视图由上角下矯正投影t视圈主视图左视图由左向右着
18、专业资料专业资料代数重点难点总结方程(组)、 基本概念1方程、方程的解(根)、方程组的解、解方程(组)二、一元二次方程1定义及一般形式:2解法:直接开平方法(注意特征)配方法(注意步骤一推倒求根公式)公式法:因式分解法(特征:左边=0)3.根的判别式:b24acbc4.根与系数的关系(韦达定理):X!+X2=-,人乂2=aa逆定理:若,则以为,x2为根的一元二次方程是:a(x-捲)(x-x2)=0。5.常用等式:三、可化为一元二次方程的方程1.分式方程定义基本思想:去分母基本解法:去分母法换元法(如,)验根及方法专业资料2.无理方程定义 基本思想:分母有理化基本解法:乘方法(注意技巧! !)购
19、换元法(例,)验根及方法3简单的二元二次方程组由一个二元一次方程和一个二元二次方程组成的二元二次方程组都可用代入法解。四、列方程解应用题一概述列方程(组)解应用题是中学数学联系实际的一个重要方面。其具体步骤是:审题。理解题意。弄清问题中已知量是什么,未知量是什么,问题给出和涉及的相等关 系是什么。设元(未知数)。直接未知数间接未知数(往往二者兼用)。一般来说,未知数越 多,方程越易列,但越难解。用含未知数的代数式表示相关的量。寻找相等关系(有的由题目给出,有的由该问题所涉及的等量关系给出),列方程。一 般地,未知数个数与方程个数是相同的。解方程及检验。答案。专业资料综上所述,列方程解应用题实质
20、是先把实际问题转化为数学问题(设元、列方程),在由数学问题的解决而导致实际问题的解决(列方程、写出答案)。在这个过程中,列方程起 着承前启后的作用。因此,列方程是解应用题的关键。函数及其图象重难点二次函数的图象和性质。一、平面直角坐标系1各象限点的坐标的特点2.坐标轴上点的坐标的特点3.关于坐标轴、原点对称的点的坐标的特点4.坐标平面点与有序实数对的对应关系二、函数1.表示方法:解析法:列表法;图象法。2.确定自变量取值围的原则:使代数式有意义:使实际问题有意义。3.画函数图象:列表:描点连线。三、二次函数(定义图象性质)定义:图象:抛物线(用描点法画出:先确定顶点、对称轴、开口方向,再对称地
21、描点) 配方法变为,贝U顶点为(h,k);对称轴为直线x=h;a0时,开口向上;a0时,在对称轴左侧,右侧时,在对称轴左侧,右侧。四、重要解题方法专业资料专业资料1.用待定系数法求解析式(列方程组求解)。对求二次函数的解析式,要合理选用 般式或顶点式,并应充分运用抛物线关于对称轴对称的特点,寻找新的点的坐标。2利用图象二次函数中的k、b;a、b、c的符号。解直角三角形重难点解直角三角形一、三角函数1.定义:在RtKBC中,/C=Rt/,则sinA= ;cosA= ;tgA= ;ctgA=.2.特殊角的三角函数值:030456090sina01J、31222cosa1乜_J21- 0222tga
22、/乜1333.互余两角的三角函数关系:sia(9=cosa;4.三角函数值随角度变化的关系5.查三角函数表二、解直角三角形1.定义:已知边和角(两个,其中必有一边)一所有未知的边和角专业资料2.依据:边的关系:专业资料边角关系:三角函数的定义。注意:尽量避免使用中间数据和除法。三、对实际问题的处理1俯、仰角:2方位角、象限角:3坡度:tga4在两个直角三角形中,都缺解直角三角形的条件时,可用列方程的办法解决。几何四边形重难点相交线与平行线、三角形、四边形的有关概念、判定、性质。 分类表:1.一般性质(角)角和:360顺次连结各边中点得平行四边形。推论1:顺次连结对角线相等的四边形各边中点得菱形。推论2:顺次连结对角线互相垂直的四边形各边中点得矩形。外角和:360角的关系:A+B=90专业资料2.特殊四边形研究它们的一般方法 平行四边形、矩形、菱形、形;梯形、等腰梯形的定义、性质和判定判定步骤:四边形一平行四边形一矩形一形匚一菱形一一T对角线的纽带作用:3对称图形轴对称(定义及性质) 中心对称(定义及性质)4.有关定理:平行线等分线段定理及其推论1、22三角形、梯形的中位线定理3平行线间的距离处处相等。(如,找下图中面积相等的三角形
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年产科招聘考试题目及答案
- 2025年病理中级试题库及答案
- 2025年理化专业考试试题及答案
- 2025年gmp厂房与设施设备试题及答案
- 教育管理学答辩题目及答案
- 静脉输液泵的留置与有效监控
- 临床输液系统的安全检测与维护
- 老年患者身心护理查房
- 静脉留置针更换规范与技巧
- 2025年gcp试题及答案解析
- 甜品糖水店铺创业计划
- 应急人员转移应急预案
- 10kV架空线路选址与勘察
- T-GXAS 768-2024 尿中反-反式粘糠酸的测定 液相色谱-质谱联用法
- 四川省通信产业服务有限公司笔试题库
- 患者医疗信息管理制度
- 罪犯个别教育转化案例、罪犯X某的矫治个案、教育改造案例2023(共5篇)
- 石漠化综合治理人工造林设计方案
- 2024年物联网安装调试员职业技能竞赛考试题库500题(含答案)
- 《建筑施工技术》课件-砌筑工程施工
- 图文制作服务 投标方案(技术方案)
评论
0/150
提交评论