上海海事大学11-12数值分析试B卷(共5页)_第1页
上海海事大学11-12数值分析试B卷(共5页)_第2页
上海海事大学11-12数值分析试B卷(共5页)_第3页
上海海事大学11-12数值分析试B卷(共5页)_第4页
上海海事大学11-12数值分析试B卷(共5页)_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、精选优质文档-倾情为你奉上上海海事大学2011-2012学年第 2 学期研究生 数值分析 课程考试试卷B(答案)学生姓名: 学号: 专业:一 填空题(每小格3分共33分)1. 以线性迭代求解Ax=b时,迭代收敛的充要条件是迭代矩阵 2. 已知,是以整数点0,1,2,n为节点的Lagrange插值基函数,则:= x , 3. 设则差商 5 04. 对于求解非线性方程,Newton法的迭代公式是5. Newton-Cotes数值求积公式的代数精度至少具有n_次,当n为偶数时,求积公式代数精度至少具有n_+1_次, 且16. QR法是计算 非奇异矩阵的 所有 特征值和特征向量的计算方法7求解常微分方

2、程初值问题 的Euler二步法公式为, 它是2 阶方法。二 用基函数构造法,求一个次数不高于4次的Hermite插值多项式,使它满足:,。(7分)解:解:; 插值余项:, ,三 假设已知矩阵A的某个特征值的近似值,即有,。试分析用什么方法可以修正特征值的近似值,并得到相应于特征值的特征向量。 (6分) 解:设,故是B的按模最小特征值。由反幂法可得: ,作,即得,则对充分大的,(即为特征值对应的特征向量)且:四 设有方程组Ax=b,其中A为对称正定矩阵,迭代公式试证明:当时,迭代序列收敛。(其中是A的最大特征值)(6分)证明:可以得 迭代矩阵,特征值为如,则,故时,成立,所以迭代收敛。五设,其中

3、A是, 当取何范围值时A为正定。又取何范围值时,Jacobi迭代为是收敛的。(6分)证:因为A正定,所以各阶顺序主子式>0, ,得。如2D-A也正定,则Jacobi迭代收敛,所以, 得六给定求积公式 试决定A、B和C使其具有尽可能高的代数精度,并指出所达到的代数精度的次数 (7分)解当f(x)=1 时左,右=A+B+C 当f(x)=x 时左,右=(A+C)当f(x)=x时左,右=(A+C)要使求积公式至少具有次代数精度,其充分必要条件是,满足如下方程组:解得,代入得当f(x)=x时的左,右,左右当f(x)=x时左,右左右综上,当求积公式中求积系数取,时得到求积公式,其代数精度取到最高,此

4、时代数精度为七. 求 在-1,1 上的最佳二次逼近多项式。已知 。(5分)解 因所以八 证明用单步法 求解初值问题, 可以给出准确解 。 (7分) 解: 因: 又由taylor展开得:由此:,故当时,该法可得准确解。九试用关于互异节点和的插值多项式和构造出关于节点的不超过n-1次的多项式。(7分)解:因为,且都为不超过n-2次的多项式,故,所以为不超n-1次多项式有得到所以十 证明:左矩形求积公式 。设,试以此构造复合求积公式,并说明该复合求积公式是收敛的。(8分)解:因为:; 故: =又:分划a,b得:,k=1,2,n得复合公式:所以:=其中:, 且有:十一 对于初值问题, 若函数在区域,满足 条件,试说明二阶Runge-Kutta方法 在条件下是收敛的。 并用该方法求解初值问题 , 讨论绝对稳定性对步长的限

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论