版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、一一、掌握优先处理元素(位置)法、掌握优先处理元素(位置)法二二、掌握捆绑法、掌握捆绑法三三、掌握插空法、掌握插空法四四、隔板法、隔板法五五、分组分配问题:、分组分配问题: 1 1、是否均匀;是否均匀; 2 2、是否有组别。是否有组别。复习引入:复习引入:1、什么叫做什么叫做从从n n个不同元素中取出个不同元素中取出m m个元素的一个排列个元素的一个排列?从从n个不同元素中取出个不同元素中取出m(mn)个元素,按照一定的)个元素,按照一定的顺序排成一列,叫做从顺序排成一列,叫做从n个不同元素中取出个不同元素中取出m个元素的个元素的一个排列一个排列从从n个不同的元素中取出个不同的元素中取出m(m
2、n)个元素的所有排列的个个元素的所有排列的个数,叫做从数,叫做从n个不同元素中取出个不同元素中取出m个元素的个元素的排列数排列数. 用符号用符号 表示表示mnA2、什么叫做什么叫做从从n n个不同元素中取出个不同元素中取出m m个元素的排列数个元素的排列数?3 3、排列数的两个公式是什么排列数的两个公式是什么?)1()2)(1(mnnnnAmn!()!mnnAnm(n,mN*,mn)组合定义:组合定义:一般地说,从一般地说,从 n n 个不同元素中,任取个不同元素中,任取 m m (mn) (mn) 个元素并成一组,叫做从个元素并成一组,叫做从 n n 个不同元素中取个不同元素中取出出 m m
3、 个元素的一个组合。个元素的一个组合。组合数公式:组合数公式:mnn!n(n-1)(n-m+1)C =m!(n-m)!m!组合数的两个性质组合数的两个性质:(1) (2)mn -mnnC= Cmmm-1n+1nnC= C +C 例例1:(1)7位同学站成一排,共有多少种位同学站成一排,共有多少种 不同的不同的排法?排法?分析:问题可以看作分析:问题可以看作7个元素的全排列个元素的全排列.775040A (2)7位同学站成两排位同学站成两排(前前3后后4),共有多少,共有多少种不同的排法?种不同的排法? 分析分析:根据分步计数原理根据分步计数原理 76 5 432 17!5040 (3)7位同学
4、站成一排,其中甲站在中间位同学站成一排,其中甲站在中间的位置的位置,共有多少种不同的排法?共有多少种不同的排法? 分析分析:可看作甲固定可看作甲固定,其余全排列其余全排列 66720A (4)7位同学站成一排,甲、乙只能站在位同学站成一排,甲、乙只能站在两端的排法共有多少种?两端的排法共有多少种?解解:将问题分步将问题分步第一步第一步:甲乙站两端有甲乙站两端有 种种第二步第二步:其余其余5名同学全排列有名同学全排列有 种种22A55A25252400A A共共有有种种答:共有答:共有2400种不同的排列方法。种不同的排列方法。(5)7位同学站成一排,甲、乙不能站在位同学站成一排,甲、乙不能站在
5、排头和排尾的排法共有多少种?排头和排尾的排法共有多少种?解法一解法一:(特殊位置法特殊位置法)第一步第一步:从其余从其余5位同学中找位同学中找2人站排头和排尾人站排头和排尾,有有 种种;25A第二步第二步:剩下的全排列剩下的全排列,有有 种种;55A25552400A A共共有有种种答:共有答:共有2400种不同的排列方法。种不同的排列方法。解法二解法二:(特殊元素法特殊元素法)第一步第一步:将甲乙安排在除排头和排尾的将甲乙安排在除排头和排尾的5个个位置中的两个位置上位置中的两个位置上,有有 种种;25A第二步第二步:其余同学全排列其余同学全排列,有有 种种;55A25552400A A共共有
6、有种种答:共有答:共有2400种不同的排列方法。种不同的排列方法。解法三解法三:(排除法排除法)先全排列有先全排列有 种种,其中甲或乙站排头有其中甲或乙站排头有 种种,甲或乙站排尾的有甲或乙站排尾的有 种种,甲乙分别站在排头和甲乙分别站在排头和排尾的有排尾的有 种种.77A662A662A2525A A7625762542400AAA A 共共有有种种答:共有答:共有2400种不同的排列方法。种不同的排列方法。优限法优限法:对于对于“在在”与与“不在不在”等类似等类似有限制有限制条件的排列问题条件的排列问题,常常使用常常使用“直接直接法法”(主要为主要为“特殊位置法特殊位置法”和和“特殊特殊元
7、素法元素法”)或者或者“排除法排除法”,即即优先考优先考虑限制条件虑限制条件.这种方法就是这种方法就是优限法优限法.【总结归纳】【总结归纳】一般地,对于有限制条件的排列问题,有以下两种方法:一般地,对于有限制条件的排列问题,有以下两种方法:直接计算法直接计算法 排列的限制条件一般是:某些特殊位置和特殊元素排列的限制条件一般是:某些特殊位置和特殊元素. 解决的办法是解决的办法是“特事特办特事特办”,对于这些特殊位置和元素,对于这些特殊位置和元素,实行优先考虑,即实行优先考虑,即特殊元素预置法特殊元素预置法、特殊位置预置法特殊位置预置法. 间接计算法间接计算法 先抛开限制条件,计算出所有可能的排列
8、数,再从先抛开限制条件,计算出所有可能的排列数,再从中减去不合题意的排列数,特别要注意:不能遗漏,也中减去不合题意的排列数,特别要注意:不能遗漏,也不能重复不能重复. 即即排除法排除法.搞清限制条件的真正含义,做针对性文章!搞清限制条件的真正含义,做针对性文章!例例2:七个家庭一起外出旅游,若其中四家是一:七个家庭一起外出旅游,若其中四家是一个男孩,三家是一个女孩,现将这七个小孩站个男孩,三家是一个女孩,现将这七个小孩站成一排照相留念。成一排照相留念。若三个女孩要站在一起,有多少种不同的排法?若三个女孩要站在一起,有多少种不同的排法?解:将三个女孩看作一人与四个男孩排队,有 种排法,而三个女孩
9、之间有 种排法,所以不同的排法共有: (种)。5353720A A 55A33A捆 绑 法捆 绑 法若三个女孩要站在一起,四个男孩也要站在一若三个女孩要站在一起,四个男孩也要站在一起,有多少种不同的排法?起,有多少种不同的排法?不同的排法有:不同的排法有:234234288A A A (种)说一说说一说捆绑法一般适用于捆绑法一般适用于 问题的处理。问题的处理。 相邻相邻例例2:七个家庭一起外出旅游,若其中四家是一:七个家庭一起外出旅游,若其中四家是一个男孩,三家是一个女孩,现将这七个小孩站个男孩,三家是一个女孩,现将这七个小孩站成一排照相留念。成一排照相留念。捆绑法捆绑法:对于对于相邻相邻问题
10、问题,常常先将要相邻的元素常常先将要相邻的元素捆绑捆绑在一起在一起,视作为一个元素视作为一个元素,与其余元与其余元素全排列素全排列,再再松绑松绑后它们之间进行全排后它们之间进行全排列列.这种方法就是这种方法就是捆绑法捆绑法.若三个女孩互不相邻,有多少种不同的排法?若三个女孩互不相邻,有多少种不同的排法?解:先把四个男孩排成一排有解:先把四个男孩排成一排有 种排法,在每一排种排法,在每一排列中有五个空档(包括两端),再把三个女孩插入列中有五个空档(包括两端),再把三个女孩插入空档中有空档中有 种方法,所以共有:种方法,所以共有: (种)(种)排法。排法。35A44A43451440A A 插 空
11、 法插 空 法例例2:七个家庭一起外出旅游,若其中四家是一个男孩,:七个家庭一起外出旅游,若其中四家是一个男孩,三家是一个女孩,现将这七个小孩站成一排照相留念。三家是一个女孩,现将这七个小孩站成一排照相留念。男生、女生相间排列,有多少种不同的排法?男生、女生相间排列,有多少种不同的排法?解:先把四个男孩排成一排有解:先把四个男孩排成一排有 种排法,在每一排种排法,在每一排列中有五个空档(包括两端),再把三个女孩插入列中有五个空档(包括两端),再把三个女孩插入空档中有空档中有 种方法,所以共有:种方法,所以共有: (种)(种)排法。排法。33A44A4343144A A 插 空 法插 空 法例例
12、2:七个家庭一起外出旅游,若其中四家是一个男孩,:七个家庭一起外出旅游,若其中四家是一个男孩,三家是一个女孩,现将这七个小孩站成一排照相留念。三家是一个女孩,现将这七个小孩站成一排照相留念。甲、乙两人的两边必须有其他人,有多少种不甲、乙两人的两边必须有其他人,有多少种不 同的排法?同的排法?解:先把其余五人排成一排有 种排法,在每一排列中有四个空档(不包括两端),再把甲、乙插入空档中有 种方法,所以共有: (种)排法。24A55A52541440A A 插 空 法插 空 法例例2:七个家庭一起外出旅游,若其中四家是一个男孩,:七个家庭一起外出旅游,若其中四家是一个男孩,三家是一个女孩,现将这七
13、个小孩站成一排照相留念。三家是一个女孩,现将这七个小孩站成一排照相留念。插空法插空法:对于对于不相邻不相邻问题问题,先将其余元素全排先将其余元素全排列列,再将这些不相邻的元素再将这些不相邻的元素插入空挡插入空挡中中,这种方法就是这种方法就是插空法插空法.例例3.1、将四个将四个不同的不同的小球分成两组,每组小球分成两组,每组两个,有多少分法?两个,有多少分法?3种种2、将四个、将四个不同的不同的小球分给两人,每人两个,小球分给两人,每人两个, 有多少分法?有多少分法?甲甲甲甲乙乙乙乙6种种3、将四个、将四个不同的不同的小球分成两组,一组三个,小球分成两组,一组三个,一组一个,有多少分法?一组一
14、个,有多少分法?4种种4、将四个小球分给两人,一人三个,、将四个小球分给两人,一人三个, 一人一个,有多少分法?一人一个,有多少分法?甲甲乙乙甲甲乙乙8种种若分成的若分成的m组是有组别的,组是有组别的,只需在原来的分组基础上再只需在原来的分组基础上再mmA 例例3:有有6本不同的书,分成本不同的书,分成3堆堆.(1)如果每堆)如果每堆2本,有多少种分法?本,有多少种分法?(2)如果分成一堆)如果分成一堆1本,一堆本,一堆2本,一堆本,一堆3本,有多少种分法?本,有多少种分法? 分析分析:这与例这与例2不同,区别在于把不同,区别在于把 6本不同的书分给甲、本不同的书分给甲、乙、丙乙、丙3人,每人
15、人,每人2本,相当于把本,相当于把6本不同的书先分成本不同的书先分成3堆,再把分得的堆,再把分得的3堆分给甲、乙、丙堆分给甲、乙、丙3人人.2226423390156C C CA12365360C C C 总总 结:结: 分组分配问题主要有分组后分组分配问题主要有分组后有分配对象有分配对象( (即即组本身有序组本身有序) )的的均分均分与与不均分不均分问题及分组后问题及分组后无分无分配对象配对象( (即组本身无序即组本身无序) )的的均分均分与与不均分不均分问题四种问题四种类型,常见的情形有以下几种类型,常见的情形有以下几种: :rrrrnrrnrnCCCC2 (2)均匀、有序分组均匀、有序分
16、组: 把把n个不同的元素分成有序的个不同的元素分成有序的m组,每组组,每组r个元素,个元素,则共有则共有 种分法种分法.(其中其中mr=n)mmrrrrnrrnrnACCCC2 (1)均匀、无序分组均匀、无序分组: 把把n个不同的元素分成无序的个不同的元素分成无序的m组,每组组,每组r个元素,个元素,则共有则共有 种分法种分法.(其中其中mr=n)mmrrrrrnrrnrnCCCC321211 (3)非均匀、无序分组非均匀、无序分组:把把n个不同的元素分成个不同的元素分成m组,第组,第1组组r1个元素,第个元素,第2组组r2个元素,第个元素,第3组组r3个元素,个元素,第第m组组rm个元素,个
17、元素,则共有则共有 种分法种分法.(其中其中r1+r2+r3+rm=n)(4)非均匀、有序分组非均匀、有序分组:把把n个不同的元素分成个不同的元素分成m组,第组,第1组组r1个元素,第个元素,第2组组r2个元素,第个元素,第3组组r3个元素,个元素,第第m组组rm个元素,个元素,再分给再分给m个人,则共有个人,则共有 种分法种分法.(其中其中r1+r2+r3+rm=n)mmrrrrrnrrnrnACCCCmm321211 (5)局部均匀分组局部均匀分组:把把n个不同的元素分成个不同的元素分成m组,其中组,其中m1个组有个组有r1个元个元素,素, m2个组有个组有r2个元素,个元素, mk个组有
18、个组有rk个元素,个元素,则共有则共有 种分法种分法.(其中其中m1r1+m2r2+m3r3+mkrk=n)kkkkmmmmmmrrrmrnrrmnrrnrnAAACCCCC221121111111)1( 例例4:有有6本不同的书,分成本不同的书,分成4堆堆.(3)如果一堆)如果一堆3本,其余各堆各本,其余各堆各1本,有多本,有多少种分法?少种分法?(4)如果每堆至多)如果每堆至多2本,至少本,至少1本,有多少本,有多少种分法?种分法? 311163213320 3 2 1206C C C CA 22116421222215 62 14522C C C CA A 3620C或例例5:从从6个学
19、校中选出个学校中选出30名学生参加数学竞名学生参加数学竞赛赛,每校至少有每校至少有1人人,这样有几种选法这样有几种选法?分析分析:问题相当于把问题相当于把30个相同的球放入个相同的球放入6个不同盒个不同盒子子(盒子不能空的盒子不能空的)有几种放法有几种放法?这类问题可用这类问题可用“隔隔板法板法”处理处理.小结:把小结:把n个相同元素分成个相同元素分成m份,每份至少份,每份至少1个元素,问有多少种不同分法的问题可以采个元素,问有多少种不同分法的问题可以采用用“隔板法隔板法”.共有:共有:529118755C11mnC变式变式1:将将7只相同的小球全部放入只相同的小球全部放入4个不同个不同盒子,
20、每盒至少盒子,每盒至少1球的放法有多少种?球的放法有多少种?变式变式2:将将7只相同的小球全部放入只相同的小球全部放入4个不同盒个不同盒子,每盒可空,不同的放法有多少种?子,每盒可空,不同的放法有多少种?3620C 310120C课堂练习:课堂练习:1、4个学生和个学生和3个老师排成一排照相,老师不能排两端,个老师排成一排照相,老师不能排两端,且老师必须排在一起的不同排法种数是(且老师必须排在一起的不同排法种数是( ) A . B . C . D .77A3344AA223322AAA333324AAAD2、计划展出、计划展出10幅不同的画,其中幅不同的画,其中1幅水彩画,幅水彩画,4幅油画,
21、幅油画,5幅国画,排成一行陈列,要求同一品种的画必须连在幅国画,排成一行陈列,要求同一品种的画必须连在一起,那么不同的陈列方式有(一起,那么不同的陈列方式有( )4545AA A345345BA A A145345CA A A245245DA A AB3、在、在7名运动员中选出名运动员中选出4名组成接力队,参加名组成接力队,参加4100米米接力赛,那么甲、乙两人都不跑中间两棒的安排方法接力赛,那么甲、乙两人都不跑中间两棒的安排方法有多少种?有多少种?)(400252235121245种AAAAAA练习练习2:将将5个人分成个人分成4个组,每组至少个组,每组至少1人,人, 则分组的种数是多少?则
22、分组的种数是多少?1112321533CCCCA25C练习练习1:将将12个人分成个人分成2,2,2,3,3的的5个个组,则分组的种数是多少?组,则分组的种数是多少?2223312108633232CCCCCAA练习练习3:9件不同的玩具,按下列方案有几种分法?件不同的玩具,按下列方案有几种分法? 1.甲得甲得2件,乙得件,乙得3件,丙得件,丙得4件,有多少种分法?件,有多少种分法? 2.一人得一人得2件,一人得件,一人得3件,一人得件,一人得4件,有多少种件,有多少种分法?分法? 3.每人每人3件,有多少种分法?件,有多少种分法? 4.平均分成三堆,有多少种分法?平均分成三堆,有多少种分法? 5.分为分为2、2、2、3四堆,有多少种分法?四堆,有多少种分法? 解:解:2349741260C C C 234397437560C C C A 3339631680C C C 33396333280C C CA22236423331260C C CCA课堂小结:课堂小结:1、对限制条件较复杂的排列组合应用题,要周、对限制条件较复杂的排列组合应用题,要周密分析,设计出合理的方案,把复杂问题分解密分析,设计出合理的方案,把复杂问题分解成若干个
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 教育金理念规划保险
- 教育局工作规划
- 高端消费品市场案例分享
- 黄文起胸科手术麻醉管理
- 护士长外出学习管理思路
- FOCUS-PDCA改善案例-降低护理文件书写差错率医院品质管理成果汇报
- 成人营养失调的护理措施
- 肿瘤危重患者的护理常规
- 单元10 新一代信息技术基础
- 2025届高考作文押题预测2篇(题目+参考立意)
- 2024营运纯电动汽车换电服务技术要求
- 统编版语文六年级上册第八单元 我心中的鲁迅单元任务群整体公开课一等奖创新教学设计
- 2024年人工智能训练师(高级)职业鉴定理论考试题库及答案
- 【汽车生产企业广汽集团的财务问题分析(基于杜邦分析)9700字论文】
- 2024全国普法知识考试题库及答案
- 2024-2030年中国纯天然藏香盘香市场销售状况及营销前景预测报告
- JT-T-1180.8-2018交通运输企业安全生产标准化建设基本规范第8部分:水路旅客运输企业
- 考勤管理系统设计方案
- 2024年宁波城投集团第一期内部人才市场招聘重点基础提升难、易点模拟试题(共500题)附带答案详解
- 重症医学科感染监测规范
- 统计与数据分析基础-形成性考核一(项目1-项目2阶段性测试权重15%)-国开-参考资料
评论
0/150
提交评论