下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、 13.3全等三角形的判定(教案)授课人:徐应兰 班级:八(2)班 授课时间:9月19日一、 教学目标:知识与技能: 掌握“边边边”条件的内容,并能初步应用“边边边”条件判定两个三角形全等。过程与方法: 经历探索三角形全等条件的过程,培养学生的探究意识和合作交流的习惯。情感态度和价值观: 利用三角形全等的条件,解决相关的数学问题,培养探索新知的能力。二、教学重点:灵活运用三角形全等的条件判定两个三角形全等。三、教学难点:利用三角形全等的性质解决实际问题。四、教学方法:先学后导,三层训练五、学习方法:自主、合作、探究六、授课类型:新授课七、教学工具:多媒体、三角板八、教学过程: (一)第一层次训
2、练(时间3分钟) 1、什么是全等三角形? 2、全等三角形有什么性质?(二)板书课题 (三)展示目标(四)自学指导: 1、请同学们认真完成p38 的“观察与思考”,判断 ABC和 ABC是否全等。2、仔细看一看p39“一起探究”,尝试总结三角形全等的条件,掌握三角形判定“边边边”(sss)。五分钟后,比一比看谁能做得又对又快!(五)先学 1、自我阅读:学生自主看课本p38- p39,教师巡视监督。 2、自我检测-第二层次训练(时间10分钟) 基本事实一:如果两个三角形的三边对应 ,那么这两个三角形 。简记为“边边边”或“SSS”ABCABC(1) 如图,如果AB=AB,BC=BC,AC=AC,则
3、下列结论正确( ) A. ABC ABCB. ABC CABC. ABC BCAD.这两个三角形不全等 (2)如图,已知AD=CB,若利用“边边边”定理来判定ABDC ABC CDA,则需要添加一个直接的条件( ) A.AB=CD B.AC=AD C.AC=BC D.AB=AC(3)木工师傅在做完门框后,为了防止门框变形,常常像图中所示的那样钉上两条斜拉的木板条,这样做是因为三角形具有(4)已知:如图,AB=CB,AD=CD.求证: ABD CBDABDC 证明 :在 ABD和 CBD中, AB= (已知) AD=CD ( ) BD=BD (公共边) ABD CBD(SSS)证明的书写步骤:1
4、、准备条件:证全等时把要用的条件要先证好。2、三角形全等书写步骤: 写出在哪两个三角形中; 摆出三个条件用大括号括起来; 写出全等结论。AEDBCF(5)已知:如图,AB=EF,AC=ED,BF=CD.求证: ABC EFD (六)后导 1、合作互学:小组之间互相讨论,组长负责点评。2、反馈指导:(1)如果两个三角形三边对应相等,那么这两个三角形全等。 (2)在 ABC DEF中,如果AB=DE,AC=DF,BC=EF,那么 ABC DEF(SSS)(七)第三层次训练(时间10分钟)1、如图,已知点A,D,C,F在同一条直线上,AB=DE,BC=EF,要使 ABC DEF,还需要添加一个条件是ADCFBE2、已知:如图,AB=DB,AC=DC.求证: ABC DBC.ACBDABDEC3、已知:如图,AB=AD,AC=AE,BC=DE.求证:九、课后作
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 咖啡行业咖啡制作培训总结
- 内科门诊医生岗位工作总结
- 分子影像科护士年终总结
- 广告设计师工作总结设计广告作品传递品牌形象
- 怎样提高英语水平
- 2024年度大型办公空间地毯批量采购合同范本3篇
- 建筑行业助理工作要求总览
- 教育培训行业美工教育展示图学习资料设计
- 2024年度高端商务酒店长期租赁合同范本3篇
- 拓展训练发言稿
- 【服装企业比音勒芬服饰的财务问题分析(基于杜邦分析)9700字论文】
- 中药封包课件
- 住宅小区光纤入户施工方案
- 电气工程及其自动化低压电器中继电器应用
- 2023年澳大利亚的森林和林业概况报告
- M7.5浆砌块石挡土墙砌筑施工方法
- 2022年度黑龙江省重点新产品名单
- 2023北京朝阳区初三上期末考物理试卷及答案
- 挖掘机司机安全培训试题和答案
- 工程电力之DCS系统受电及系统复原调试措施
- 学前心理学 期末考试题库
评论
0/150
提交评论