工程材料力学性能课件_第1页
工程材料力学性能课件_第2页
工程材料力学性能课件_第3页
工程材料力学性能课件_第4页
工程材料力学性能课件_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、第一章滞弹性:在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象。包申格效应:金属材料经过预先加载产生少量塑性变形(残余应变为1%2%),卸载后再同向加载,规定残余应力(弹性极限或屈服强度)增加;反向加载,规定残余应力降低(特别是弹性极限在反向加载时几乎降低到零)的现象。韧脆转变:具有一定韧性的金属材料当低于某一温度点时,冲击吸收功明显下降,断裂方式由原来的韧性断裂变为脆性断裂,这种现象称为韧脆转变.3 .金属的弹性模量主要取决于什么?为什么说它是一个对结构不敏感的力学性能指标? 【P4】答:金属的弹性模量主要取决于金属原子本性和和晶格类型。合金化、热处理、冷塑性变形等能够改变金属

2、材料的组织形态和晶粒大小,但是不改变金属原子的本性和晶格类型,故弹性模量对组织不敏感。5、 决定金属屈服强度的因素有哪些?【P12】答:内在因素:金属本性及晶格类型、晶粒大小和亚结构、溶质元素、第二相。外在因素:温度、应变速率和应力状态。22. 第二章缺口效应:由于截面上缺口的存在,在静载荷作用下,缺口截面上的应力状态发生变化,而影响金属材料的力学性能的效应。布氏硬度:用一定直径D的硬质合金球,以一定的压力F压在金属试样表面上,保持T秒后卸除压力,在试样表面形成压痕,用压力F除以压痕球形面积,所得的值表示材料硬度。洛氏硬度:试验测量压痕深度h表示材料的硬度值,压头有两种:圆锥角120°

3、;的金刚石圆锥体;一定直径的小淬火钢球或硬质合金球。3. 试综合比较单向拉伸、压缩、弯曲及扭转试验的特点和应用范围。1单向拉伸试验特点:温度、应力状态和加载速率是确定的,且常用标准的光滑圆柱试样进行试验。 应用范围:一般是用于那些塑性变形抗力与切断强度较低的所谓塑性材料试验。 2压缩试验特点:单向压缩试验的应力状态系数2,比拉伸,弯曲,扭转的应力状态都软,拉伸时塑性很好的材料在压缩时只发生压缩变形而不会断裂。应用范围:拉伸时呈脆性的金属材料的力学性能测定。如果产生明显屈服,还可以测定压缩屈服点。3弯曲试验特点:试样形状简单,操作方便,弯曲试样应力分布不均匀,表面最大,中心为零。可较灵敏的反映材

4、料表面缺陷。应用范围:对于承受弯曲载荷的机件,测定其力学性能。4扭转试验特点:1扭转的应力状态软性系数0.8,比拉伸时大,易于显示金属的塑性行为。2圆柱形试样扭转时,整个长度上塑性变形是均匀的,没有颈缩现象,所以能实现大塑性变形量下的试验。3能较敏感的反映出金属表面缺陷及硬化层的性能。4扭转时试样中的最大正应力与最大切应力在数值上大体相等,而生产上所使用的大部分金属材料的正断强度大于切断强度,所以,扭转试验是测定这些材料切断最可靠的办法。应用范围:研究金属在热加工条件下的流变性能与断裂性能,评定材料的热压力加工性;研究或检验工件热处理的表面质量和各种表面强化工艺的效果。5. 缺口试样拉伸时应力

5、分布有何特点? 当缺口试样拉伸,处于弹性状态下时,缺口截面上的应力分布是不均匀的,轴向应力在缺口根部最大。随着离开根部距离的增大,不断下降,即在缺口根部产生应力集中。并且在缺口根部内侧还出现了横向拉应力,它是由于材料横向收缩引起的,自缺口根部向内部发展,收缩变形阻力增大,因此?x逐渐增加。当增大到一定数值后,随着的不断减小,也随之下降。基试样处于塑性状态下时,在存在缺口的条件下会出现三向应力状态,并产生应力集中,试样的屈服应力比单向拉伸时高,产生所谓“缺口强化”现象。7. 试说明布氏硬度、洛氏硬度与维氏硬度的试验原理,并比较布氏、洛氏与硬度试验方法的优缺点。布氏硬度:试验原理:用一定直径D的硬

6、质合金球为压头,施以一定的实验力F,将其压入试样表面,经规定保持时间T后卸除试验力,试样表面将残留压痕。测量压痕平均直径d,求得压痕球形面积A,布氏硬度值(HBW)就是试验力F除以压痕球形表面积所得的商。试验优点:1、其硬度值能反映金属在较大范围内各组成相的平均性能,而不受个别组成相及微小不均匀性的影响。 2、试验数据稳定,重复性强。试验缺点:1、对不同材料需要更换不同直径的压头球和改变试验力,压痕直径的测量也比较麻烦,因而用于自动检测时受到限制。 2、当压痕直径较大时,不宜在成品上进行试验。洛氏硬度:试验原理:洛氏硬度是以顶角为120度的金刚石圆锥体或一定直径的小淬火钢球作为压头,以规定的试

7、样力将其压入试样表面。试验时,先加初试验力,然后加主试验力,压入试样表面之后卸除主试验力,在保留初试验力的情况下,根据试样表面压痕深度,确定被测金属材料的洛氏硬度值。试验优点:操作简便、迅速,硬度值可直接读书;压痕较小,可在工件上进行试验;采用不同标尺可测定各种软硬不同的金属盒厚度不一的试样的硬度。试验缺点:压痕较小,代表性差;若材料中有偏析及组织不均匀等缺陷,则所测硬度值重复性差,分散度大;用不同标尺测得的硬度值彼此没有联系,不能直接比较。维氏硬度:试验原理:维氏硬度和布氏硬度的原理一样,也是根据压痕单位面积所承受的试验力计算硬度值,所不同的是维氏硬度试验所用的压头不是球体,而是两相对面间夹

8、角为136度的金刚石四棱锥体。试验优点:不存在布氏硬度试验时要求试验力F与压头直径D之间所规定条件的约束,也不存在洛氏硬度试验时不同标尺的硬度值无法统一的弊端;维氏硬度试验时不仅试验力可任意选取,二区压痕测量精度较高,硬度值较为准确。试验缺点:硬度值需要通过测量压痕对角线长度后才能进行计算或查表,工作效率比洛氏硬度法低得多。第三章名词解释1 冲击吸收功:冲击吸收功是指规定形状和尺寸的试样在冲击试验力一次作用下折断时所吸收的功。2 低温韧性:体心立方晶体金属及合金或某些密排六方晶体金属及合金,在试验温度低于某一温度时,会由韧性状态变为脆性状态的现象。3 韧脆转变温度:材料呈现低温脆性的临界转变温

9、度。简答:4 试说明低温脆性转变温度的物理本质及影响因素。内因:1晶体结构,体心立方金属及其合金存在低温脆性 2化学成分,间隙溶质元素溶入铁素体基体中,偏聚于位错线附近,阻碍位错运动,致s升高,钢的韧脆转变温度提高 3显微组织,晶粒大小,细化晶粒使材料韧性增加;金相组织,当第二相尺寸增大时,材料韧性下降,韧脆转变温度升高。外因:温度,加载速率。7试从宏观和微观解释为什么有些材料有明显的韧脆转变,而另一些材料则没有?微观:1、派纳力(p-n)是短程力,对温度非常敏感,T下降,派纳力上升。bcc中的派纳力较fcc高很多,由于派纳力在屈服强度中占的比例很大,故bcc的低温脆性很明显。 2、bcc的低

10、温脆性还可能与迟屈服现象有关。迟屈服即对低碳钢施加一高速载荷到高于s,材料并不立即产生屈服而是经过一段孕育期才开始塑性变形。在孕育期中只产生弹性变形,由于没有塑性变形消耗能量,故有利于裂纹的扩展,从而易表现为脆性破坏。宏观:1、对于中低强度的fcc材料和大部分hcp材料,如铜等,在很低的温度下冲击值还是较高的,可以不考虑它的低温脆性。 2、对于高强材料,它们在很快的强度范围内都是脆性的,如高强钢,钛合金等。 3、低中强度钢等bcc金属及其合金,在低温是脆性解理,在高温为韧性断裂,在一定的温度范围内产生韧脆转变。第四章1.名词解释应力场强度因子K(P68):在裂纹尖端区域各点的应力分量除了决定于

11、位置外,尚于强度因子K有关,对于某一确定的点,其应力分量由KI决定,KI越大,则应力场各点的应力分量也越大,这样KI就可以表示应力场的强弱程度,称KI为应力场强度因子。“”表示型裂纹。裂纹扩展K判据(P71):裂纹在受力时只要满足KIKIC,就会发生脆性断裂。反之,即使存在裂纹,若KI<KIC也不会断裂。裂纹扩展G判据(P77):裂纹在受力时只要满足GIGIC,裂纹失稳扩展断裂。反之,即使存在裂纹,若GI<GIC也不会断裂2.试述低应力脆断的原因及防止方法(P66) 原因:在材料的生产,机件的加工和使用过程中产生不可避免的宏观裂纹,从而使机件在低于屈服应力的情况下断裂。 防止方法:

12、将断裂判据用于机件的设计上,在给定裂纹尺寸的情况下,确定机件允许的最大工作应力,或者当机件的工作应力确定后,根据断裂判据确定机件不发生脆性断裂时所允许的最大裂纹尺寸。3.试述判据的意义和用途(P71)判据解决了经典的强度理论不能解决存在宏观裂纹为什么会产生低应力脆断的原因。判据将材料的断裂韧度同机件的工作应力及裂纹尺寸的关系定量的联系起来,可直接用于设计计算,估算裂纹体的最大承受能力、允许的裂纹最大尺寸,以及用于正确选择材料、优化工艺等。.试述KI与材料强度、塑性之间的关系(P80)总的来说,断裂韧度随强度升高而降低。IC()()()().试述影响KIC的冶金因素(P81)一、材料成分、组织对

13、KIC的影响:工程上最常用的金属材料是钢铁,其相组成为基体相和第二相。裂纹扩展主要在基体相中进行,但受第二相的影响。不同的基体相和第二相的组织结构将影响裂纹扩展的途径、方式和速率,从而影响KIC。包括:1)化学成分的影响:细化晶粒的合金元素因提高强度和塑性使KIC提高;强烈固溶强化的合金元素因降低塑性使KIC明显降低,并且随合金元素含量的提高,KIC降低越甚;形成金属化合物并呈第二相析出的金属元素,因降低塑性有利于裂纹的扩展,也是KIC降低;2)基体相结构和晶粒大小的影响:一般来说,晶粒越细小,n和c就越高,则KIC也越高;3)杂质及第二相的影响:钢中的非金属夹杂物和第二相在裂纹尖端的应力场中

14、,若本身脆裂或在相界面开裂而形成微孔,微孔和主裂纹连接使裂纹扩展,从而使KIC降低;4)显微组织的影响。二、外界因素的影响:1)温度:一般大多数结构钢的KIC都随温度降低而下降;2)应变速率:具有与温度相似的效应;第五章一、名词解释(P95、P105)应力幅a:a =12(max-min)应力比r:r=minmaxK:应力强度因子范围dadN :疲劳裂纹扩展速率 二、简答题1、简述金属疲劳断裂的特点(1)疲劳是低应力循环延时断裂,即具有寿命的断裂;(2)疲劳是脆性断裂;(3)疲劳对缺陷(缺口、裂纹及组织缺陷)十分敏感。2、试述疲劳裂纹的形成机理及阻止疲劳裂纹萌生的一般办法三种机理及对应的办法:

15、(1)滑移带开裂产生裂纹:固溶强化、细晶强化等提高滑移抗力的方法;(2)相界面开裂产生裂纹:使第二相少、圆、小、均;(3)晶界开裂产生裂纹:减少杂质和细化晶粒。3、试述疲劳裂纹扩展速率的主要因素,并和疲劳裂纹萌生的影响因素进行对比分析答:影响疲劳裂纹扩展速率的因素有:应力比r(或平均应力m)、过载峰、材料的组织;影响疲劳裂纹萌生因素有:表面滑移开裂,第二相、夹夹杂物或其界面开裂;晶界或亚晶界开裂等。从两者来看,疲劳裂纹的产生的主要影响因素是由于材料内部缺陷所引起的,而与外载几乎没有关系。第六章1、应力腐蚀:金属在拉应力和特定的化学介质共同作用下,经过一段时间后所产生的低应力脆断现象。2、氢蚀:

16、由于氢与金属的第二相作用生成高压气体,使基体金属晶界结合力减弱而导致金属脆化。断口宏观形貌呈氧化色,颗粒状;微观断口上晶界明显加宽,呈沿晶断裂。5、氢致延滞断裂:高强度钢或+钛合金中,含有适量的处于固溶状态的氢,在低于屈服强度的应力持续作用下,经一段孕育期后,在金属内部三向拉应力区形成裂纹,裂纹逐步扩展,最后突然发生脆性断裂。1、试述金属产生应力腐蚀的条件及机理。条件:应力,化学介质,金属材料三者共存机理:1、对应力腐蚀敏感的合金在特定的化学介质中,首先在表面形成一层钝化膜,使金属不致进一步受到腐蚀,即处于钝化状态。2、在拉应力作用下,使裂纹尖端地区产生局部塑性变形,滑移台阶在表面露头时钝化

17、膜破裂,显露出新鲜表面。3、露出的新鲜表面在电解质溶液中成阳极,而其余具有钝化膜的金属表面为阴极,从 而形成腐蚀微电池,阳极金属变成正离子进入电解质中而产生阳极溶解,于是在金 属表面形成蚀坑。4、拉应力在蚀坑或原有裂纹尖端形成应力集中,使阳极电位降低,加速阳极金属的溶解,如果裂纹尖端的应力集中始终存在,那么微电池反应不断进行,钝化膜不能恢 复,裂纹将逐步向纵深扩展。30何为氢致延滞性断裂?为什么高强度钢的氢致延滞断裂是在一定的应变速率下和一定的温度范围内出现?答:氢致延滞断裂:高强度钢或+钛合金中,含有适量的处于固溶状态的氢(原来存在的或从环境介质中吸收的),在低于屈服强度的应力持续作用下,经

18、过一段孕育期后,在金属内部,特别是在三向拉应力区形成裂纹,裂纹逐步扩展,最后突然发生脆性断裂。这种由于氢的作用而产生的延滞断裂现象称为氢致延滞断裂。因为当应变率较低时,若试验温度过低,氢的扩散速率很慢,永远跟不上位错的运动。因此不能形成氢气团,氢也难以聚集,就不会出现氢脆,当温度变大一些,氢的扩散速率与位错运动速率逐步适应,于是塑性开始降低。当温度升到更大的时候,两者运动速率完全吻合,此时塑性最差,对氢脆最敏感。温度再升高时,一方面形成氢气团,同时由于热作用,又促进已聚集的氢原子离开气团向四周均匀扩散,降低了气团对位错的“钉扎”作用,并减少氢偏聚的尝试于是金属的塑性开始上升。当温度更大时,氢气

19、团完全被扩散破坏,氢脆现象完全消除。应变速率对氢脆敏感性的影响也是如此。所以高强度钢的氢致延滞断裂是在一定的应变速率下和一定的温度范围内出现。第七章名词解释:1.磨损:机件表面相接触并作相对运动时,表面逐渐有微小颗粒分离出来形成磨屑,使表面材料逐渐流失、造成表面损伤的现象即为磨损。2.冲蚀:冲蚀磨损是指流体或固体以松散的小颗粒按一定的速度和角度对材料表面进行冲击所造成的磨损。3.接触疲劳:接触疲劳是机件两接触面作滚动或滚动加滑动摩擦时,在交变接触压力应力长期作用下,材料表面因疲劳损伤,导致局部区域产生小片或小块状金属剥落而使材料流失的现象,又称表面疲劳磨损或疲劳磨损。解答题1. 试比较接触疲劳

20、和普通机械疲劳的异同。相同点:交变载荷长期作用,应力较小,包括裂纹的形成和扩展,疲劳曲线一样不同点:接触疲劳是工件(如齿轮、滚动轴承,钢轨和轮箍,凿岩机活塞和钎尾的打击端部等)表面在接触压应力的长期不断反复作用下引起的一种表面疲劳破坏现象;机械疲劳是金属机件在变动应力和应变长期作用下,由于累积损伤而引起的脆性断裂。接触疲劳表现为接触表面出现许多针状或痘状的凹坑,称为麻点,也叫点蚀或麻点磨损;普通机械疲劳分疲劳源、疲劳区和瞬断区,疲劳源比较光亮疲劳区有贝纹线,瞬断区粗糙的结晶状或剪切唇。2. 试从提高疲劳强度、接触疲劳强度、耐磨性的观点,分析化学热处理时应注意的事项。可采用的化学热处理的方法有表面热处理,渗碳渗氮表面淬火等。表面热处理能够产生表面压应力,有利于提高疲劳强度,接触疲劳强度和耐磨性。除此之外,表面热处理还可以提高表面的强度,但在应用化学热处理提高三者时需要的注意事项有:疲劳强度:表面淬火和渗碳层深度不可过大否则减小参与压应力;表面淬火

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论