版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第六章 静定桁架的内力分析(1)第一节 概述 1、理想桁架 理想桁架的假定: 桁架中所有的结点均为理想铰,即光滑无摩擦铰接; 桁架中所有杆的杆轴绝对平直,且通过其两端铰的中心; (2)(3)荷载和支座均在铰结点上,即桁架上所有外力为结点力。 理想桁架中的所有杆均是二力杆理想桁架计算得出的内力(轴力)叫主内力,相应的应力叫主应力。而由于与理想假定偏差而产生的附加内力叫次内力,相应的应力叫次应力。 返回返回 2 2、桁架的各部分名称和分类、桁架的各部分名称和分类 上弦杆上弦杆 斜腹杆斜腹杆 竖腹杆竖腹杆 桁高桁高 跨度跨度 节间长度节间长度 下弦杆下弦杆 1) 1)根据桁架的几何组成分类:根据桁架
2、的几何组成分类:简单桁架:简单桁架: 见图见图6-1-16-1-1 联合桁架:联合桁架: (a)(a)联合桁架联合桁架 复杂桁架:复杂桁架: (b) (b)复杂桁架复杂桁架 3)3)根据桁架支座反力的特点分为:根据桁架支座反力的特点分为: 2)2)根据桁架外形的几何形状分为:根据桁架外形的几何形状分为:三角形桁架、平行弦桁架、梯形桁架、折线三角形桁架、平行弦桁架、梯形桁架、折线形桁架、抛物线形桁架等。形桁架、抛物线形桁架等。 梁式桁架、拱式桁架(有推力横加)。梁式桁架、拱式桁架(有推力横加)。 3 3、内力计算方法:、内力计算方法: 静定桁架的内力计算基本方法分为:静定桁架的内力计算基本方法分
3、为: 结点结点法法截面截面法法实际应用一般是这两种基本方法的灵活选择、实际应用一般是这两种基本方法的灵活选择、联合应用联合应用。 在同一坐标中,桁架杆的轴力及投影与杆长及在同一坐标中,桁架杆的轴力及投影与杆长及投影有比例关系如下:见图投影有比例关系如下:见图6-1-36-1-3YYXXNLFLFLF ( (6-1-16-1-1简称:简称:力与杆长比例式力与杆长比例式) )图图6-1-36-1-3 规定规定 桁架杆轴力以受拉为正。桁架杆轴力以受拉为正。 第二节 桁架内力计算的结点法 1、结点法:每次取一个结点为隔离体,利用结点平衡条件,求解杆轴力的方法。例6-2-1 用结点法计算图(a)所示静定
4、桁架。 b4bDEACKF =2FAyPF=0AxF=2FByP(a) (b) 返回 解: 对于简单桁架,可以用结点法求出全部杆件的轴力。 按拆二元体的顺序,依次取结点(每次截断两根未计算的杆件)为隔离体,可不解联立方程。 要点是对本例,用结点法计算如下:对本例,用结点法计算如下: 结点结点A A: 见图见图(c)(c) FNAGF =2FAyPFNAEF=0Ax(c) (c) 51sin52cos 0YF022sinPPNAGFFFPNAGFF253 0XF0cosNAGNAEFFPNAEFF3(a) (b) 利用比例式利用比例式(6-1-1)(6-1-1)时,结点时,结点A A的受的受力图
5、见图力图见图(d)(d), FYAGF =2FAyPFNAEF=0AxFXAG (d)(d) 将斜杆中的待求轴力将斜杆中的待求轴力FNAG用用X X、Y Y方向方向的两个分力的两个分力FXAG、FYAG代替,计算如代替,计算如下:下: 0YF022PPYAGFFF23PYAGFF由比例关系,得:由比例关系,得: PYAGYAGAGNAGFFLLF253 (a) (a) 0XF0XAGNAEFFPXAGNAEFFF3 (b) (b) 结点结点E E:见图见图(e) FNEGFNED3FP(e) 0YF0NEGF 0XFPNEDFF3 (c) (d) 结点结点G G:见图见图(f)(f) FNGD
6、FNGCPF253(f)(f) 当两个待求轴力杆都为斜杆时,若要不使结点的两个平衡方程耦联,只要将直角坐标的一个坐标轴与其中的一个杆轴重合,先建立另一个坐标轴的投影方程即可。 0YF0cos2sinPNGDFFPNGDFF25 (e) 0XF0sin2cos253PNGDPNGCFFFFPNGCFF5(f) 见图见图(g) (g) 结点的两个平衡方程有时结点的两个平衡方程有时可以写成力矩的形式。可以写成力矩的形式。 FXGCFXGDFYGCFYGD23PFPF3 (g) 将力系中的某力沿其作用线上滑移到将力系中的某力沿其作用线上滑移到任一点分解,不影响原力系的平衡状任一点分解,不影响原力系的平
7、衡状态。态。 据此,将三根斜杆的轴力,均在各杆相据此,将三根斜杆的轴力,均在各杆相对对G G点的另一端点处分解。由于此时两个点的另一端点处分解。由于此时两个竖向未知力分量在一条竖直线上,可由竖向未知力分量在一条竖直线上,可由C C、D D两点分别为矩心的力矩方程求出两个水两点分别为矩心的力矩方程求出两个水平未知力分量。计算如下:平未知力分量。计算如下: 0DMPPPXGCFbFbFbF2)223(1PXGCXGCYGCYGCFFLLFPXGCXGCGCNGCFFLLF5(f) 0CMPPPPXGDFbFbFbFbF)2233(1PXGDXGDYGDYGDFFLLF21PXGDXGDGDNGDF
8、FLLF25 (e)(e) 结点结点C C:见图见图(h)(h) 0YFPNCDFFFNCDPFPF2PFPF2(h)(h) 结点结点D D:见图见图(i) 2PFPFPF3PFPF32PF(i) 该结点上的各杆轴力已有前各步计算该结点上的各杆轴力已有前各步计算得出,在此用于校核。用图得出,在此用于校核。用图(j)(j)表示表示桁架内力计算的最终结果。桁架内力计算的最终结果。DEACKPF5PF250PF3PF253PF3PF(j) (j) 2、结点法的特殊情况 单杆概念在桁架计算所取的隔离体(结点法中的结点,或截面法中的桁架的一部分)所截断的杆件中,若有一根杆件的位置或方向独立于其它杆件,使
9、该杆的轴力可由该隔离体独立确定,则这个杆件就叫做该隔离体的单杆。 在桁架的内力计算中,利用单杆的概在桁架的内力计算中,利用单杆的概念,先确定出单杆的内力,不仅简捷念,先确定出单杆的内力,不仅简捷计算过程,有时是解题的关键路径。计算过程,有时是解题的关键路径。结点单杆的情况:结点单杆的情况: (a)(a) (b) (b) 图图6-2-1 6-2-1 当结点上无荷载作用当结点上无荷载作用时,结点上单杆轴力时,结点上单杆轴力等于零,称为零杆。等于零,称为零杆。例例6-2-26-2-2 先判断图先判断图(a)(a)、(b)(b)两图所示桁架中的零杆,然两图所示桁架中的零杆,然后再说明用结点法计算余下各
10、杆轴力的次序。后再说明用结点法计算余下各杆轴力的次序。 解:解: 图图(a)(a),桁架中的零杆如图,桁架中的零杆如图(a)(a)右虚线所示。右虚线所示。然后可分别由结点然后可分别由结点D D、C C计算余计算余 DCCD(a) 图(b),桁架中的零杆如图(b)右虚线所示。然后求支座反力,再依次取结点计算余下各杆轴力。次序可为:A、D、C或 B、C、D,或分别A、B再D或再C。返回FPC2FPFPC2FP(b) 返回例例6-2-36-2-3 分析图分析图(a)所示静定桁架,试找出用结点法计算时的简单途径。解:解:见图见图(a)所示桁架 FP(a) 上部结构是对称的,只有一个水平支座约束不对称,
11、是该桁架的两个特点。一般可利用对称性简化计算过程。 思路和做法如下: 由结构整体在水平方向上的平衡条件,可确定出水平支座反力,见图(b)。 1)FPFP(b) 根据叠加原理,可将图(b)示出的已知外力分解成正对称和反对称两组外力后,分别作用在结构上,见图(c)、(d)所示。 2)F /2PF /2PF /2PF /2PF /2PF /2PF /2PF /2P(c) (d) 返回返回内力分析和解题路径:内力分析和解题路径: 3 3)图图(c)(c): 在正对称荷载下,桁架应具有正对称的内在正对称荷载下,桁架应具有正对称的内力分布,即在桁架的对称轴两侧的对称位力分布,即在桁架的对称轴两侧的对称位置
12、上的杆件,应有大小相等、性质相同置上的杆件,应有大小相等、性质相同(拉或压相同)的轴力。(拉或压相同)的轴力。 考查结点考查结点K K,见图,见图(e) (e) (e) (e) 结点上两斜杆的轴力应满足大小相等、性质结点上两斜杆的轴力应满足大小相等、性质相反(一拉一压)。这是相反(一拉一压)。这是K K形结点形结点( (根据结点根据结点的形状,又叫的形状,又叫K K形结点形结点) )上两斜杆在其结点上上两斜杆在其结点上无结点荷载情况下的典型内力特点。无结点荷载情况下的典型内力特点。 返回返回图图(d)(d): 在反对称荷载下,桁架应具有反对称的内在反对称荷载下,桁架应具有反对称的内力分布,即在
13、桁架的对称轴两侧的对称位力分布,即在桁架的对称轴两侧的对称位置上的杆件,应有大小相等、性质相反的置上的杆件,应有大小相等、性质相反的轴力。轴力。 考查结点考查结点E E:见图:见图(f) (f) (f)(f) 第三节第三节 桁架内力计算的截面法桁架内力计算的截面法1 1、截面法截面法:用一个假想的截面,将:用一个假想的截面,将桁架截成两部分,取其任一部分为隔桁架截成两部分,取其任一部分为隔离体,建立该隔离体的平衡方程,求离体,建立该隔离体的平衡方程,求解杆轴力的方法。解杆轴力的方法。截面法所截开的杆件中,轴力未知截面法所截开的杆件中,轴力未知的杆件一般不应超过三根,这样可的杆件一般不应超过三根
14、,这样可不解联立方程。不解联立方程。 仍以上一节例仍以上一节例6-2-16-2-1为例,见图为例,见图6-3-16-3-1。 IIF =2FAyPF=0AxF=2FByP(a)(a) 用截面II截开桁架第二节间的三根杆,取左侧部分为隔离体。然后,分别以截断的三根杆中的两两杆的交点为矩心,建立两个力矩平衡方程,再由一个投影方程,可不解联立方程,求出该截面上的三杆的轴力。 hFNGD2bF =2FAyPF=0AxFNGCFNEDb(b) 返回参照图参照图(b)(b)计算如下:计算如下: 见图图(b)(b),未知杆力在隔离体上的一般表示。,未知杆力在隔离体上的一般表示。 0DM)2222(1bFbF
15、bFhFPPPNGC由几何关系得:由几何关系得: 52bh 代入上式,代入上式, PNGCFF5 0GMPPPNEDFbFFbF3)22(2 0YF022sin)(PPPNGCNGDFFFFFPNGDFF25见图图(c)(c)有时利用未知杆力在隔离有时利用未知杆力在隔离体上的分力表示,可避免求斜杆体上的分力表示,可避免求斜杆力臂的麻烦。力臂的麻烦。FXGC2bbF =2FAyPF=0AxFYGCFXGDFNEDFYGD(c) 对于联合桁架,若要对于联合桁架,若要求计算出全部杆的轴求计算出全部杆的轴力,用截面法求简单力,用截面法求简单桁架之间的约束力,桁架之间的约束力,是必经之路,也是关是必经之
16、路,也是关键步骤。键步骤。例例6-3-16-3-1试对图试对图(a)(a)所示桁架,所示桁架,1)1)分析并分析并确定求解整个桁架内力的路径;确定求解整个桁架内力的路径;2)2)寻找寻找只计算杆只计算杆a a轴力时的简捷方法,并求出杆轴力时的简捷方法,并求出杆a a轴力轴力 D3dFPFP3dCAHGEKB(a) 解:解: 1 1)求整个桁架内力的一般步骤是,先)求整个桁架内力的一般步骤是,先求出支座反力,见图求出支座反力,见图(b)(b) DFPFPCBAHGEKaIFPFPIIIII (b) (b) 利用截面利用截面IIII截开两简单桁架的连接处,截开两简单桁架的连接处,取截面任一侧为隔离
17、体,见图取截面任一侧为隔离体,见图(c)(c) FNGEDFPAGKFPFNKHFNDC (c) (c) 由图由图(c)(c)所示截面左侧隔离体求出截面截断的所示截面左侧隔离体求出截面截断的三根杆的轴力后,即可依次按结点法求出所三根杆的轴力后,即可依次按结点法求出所有杆的轴力。有杆的轴力。 2) 方法1: 见图见图(d)(d) ,由结点H的结点单杆EH上的轴力,再由结点E(当杆EH轴力已知时,杆a既是结点E上的结点单杆)可求出杆a的轴力。 FXaAHEFNEGFNECFPBFYa (d) 方法2: 取截面IIII下为隔离体,见图(e) BFXaAEFNEGFNECFPFNHBHFNHKFYa(
18、e) 该隔离体上有5根被截断的杆件,但有4根是交于一点A的,因此利用以铰A为矩心的力矩方程,可直接求出杆a的轴力。 将杆a轴力在B点分解,由 0AMPPYaFdFdF32)2(31PPYaYaaNaFFFlLF35)32(25截面法的特殊情况 2.截面法单杆分两种情况,即在截面上截断的全部杆件中, 1) 除了一根单杆外,其它杆全部交于一点; 2) 除了一根单杆外,其它杆杆轴均相互平行。 见图6-3-2所示 (a)(a) (b) (b) 图图6-3-26-3-2 例例6-3-26-3-2 dFPddd(a) 解:解: 1)1)由上部结构的整体平衡条件,求由上部结构的整体平衡条件,求的支座反力如图
19、的支座反力如图(b)(b)所示。所示。 IIF=F /2ByPF =F /2AyPF=FAxP (b) (b) 2)2)取截面取截面IIII右,可求该截面上的单右,可求该截面上的单杆杆AKAK的轴力(当不利用结构的对称性的轴力(当不利用结构的对称性时,这一步是解题的关键)。计算如时,这一步是解题的关键)。计算如下:下: 0YF022222PNKAFF2PFNKAF2)依次取结点,计算指定杆轴力: 图(d) FNAJFNADF =F /2AyPF=FAxPF /2P(d) 结点A: 0YF022222PNAJFFPNAJFF22结点结点J J 图图(e)(e) PF22FNa(e)(e) 利用该结点的对称性,且由水平方向的利用该结点的对称性,且由水平方向的投影方程得:投影方程得: PNaFF22 (a) (a)再取截面再取截面IIIIIIII右侧,见图右侧,见图(f)(f),以,以O O点为矩心,列力矩方程:点为矩心,列力矩方程: 0OM0)22222(2PPNbFFbFPNbFF22(b)(b) 第四节第四节 组合结构的内力分析组合结构的内力分析 既有梁式杆又有桁架杆的结构称既有梁式杆又有桁架杆的结构称作组合结构。见图作组合结构。见图6-4-16-4-1所示。所示。 图图6-4-
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 璧山餐厅铝扣板施工方案
- 班组绩效考核方案
- 班级阅读课程设计
- 班级植物摆放课程设计
- 班级德育课程设计
- 2024年环磷酰胺原料药项目规划申请报告模板
- 2024年建筑钢材:螺纹钢项目立项申请报告
- 玻璃破损赔偿方案
- 玻璃幕墙灯箱安装方案
- 玻璃保暖性能课程设计
- 2024-2025学年八年级上学期地理期中模拟试卷(人教版+含答案解析)
- 思政课教案3篇
- 国家开放大学本科(非英语专业)学士学位英语统一考试样题
- 2024人教版道德与法治五年级上册第四单元:骄人祖先灿烂文化大单元整体教学设计
- 2024年初级消防设施操作员考试题库800题(基础知识+实操技能)
- 国家开放大学《心理学》形考任务1-4参考答案
- 胱氨酸纯度的测定(最终版)
- 表-D完整版本.0.2-作业架施工验收记录表
- 改进维持性血液透析患者贫血状况PDCA
- 毕业设计(论文)基于uml的教务管理系统的分析与设计
- 朔州市各煤炭集团公司领导挂牌煤矿表
评论
0/150
提交评论