高考平面解析几何专题突破.doc_第1页
高考平面解析几何专题突破.doc_第2页
高考平面解析几何专题突破.doc_第3页
高考平面解析几何专题突破.doc_第4页
高考平面解析几何专题突破.doc_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、高考平面解析几何专题突破.txt如果你看到面前的阴影,别怕,那是因为你的背后有阳光!我允许你走进我的世界,但绝不允许你在我的世界里走来走去。第一部分 考试要求直线和圆的方程(1) 理解直线的倾斜角和斜率的概念,掌握过两点的直线的斜率公式.掌握直线方程的点斜式、两点式、一般式,并能根据条件熟练地求出直线方程。(2) 掌握两条直线平行与垂直的条件.两条直线所成的角和点到直线的距离公式能够根据直线的方程判断两条直线的位置关系。(3) 了解二元一次不等式表示平面区域。(4) 了解线性规划的意义。并会简单的应用。(5) 了解解析几何的基本思想,了解坐标法。(6) 掌握圆的标准方程和一般方程。了解参数方程

2、的概念.理解圆的参数方程。圆锥曲线方程(1) 掌握椭圆的定义、标准方程和椭圆的简单几何性质,理解椭圆的参数方程.(2) 掌握双曲线的定义、标准方程和双曲线的简单几何性质.(3) 掌握抛物线的定义、标准方程和抛物线的简单几何性质。(4) 了解圆锥曲线的初步应用。(一)直线与圆知识要点直线的倾斜角与斜率k=tg( ),直线的倾斜角一定存在,范围是0,),但斜率不一定存在。斜率的求法:依据直线方程依据倾斜角依据两点的坐标直线方程的几种形式,能根据条件,合理的写出直线的方程;能够根据方程,说出几何意义。两条直线的位置关系,能够说出平行和垂直的条件。会判断两条直线的位置关系.(斜率相等还有可能重合)两条

3、直线的交角:区别到角和夹角两个不同概念。点到直线的距离公式。会用一元不等式表示区域。能够解决简单的线性规划问题。曲线与方程的概念,会由几何条件列出曲线方程.圆的标准方程:(xa)2+(yb)2=r2圆的一般方程:x2+y2+Dx+Ey+F=0注意表示圆的条件.圆的参数方程: 掌握圆的几何性质,会判断直线与圆、圆与圆的位置关系。会求圆的相交弦、切线问题。(二)圆锥曲线1椭圆及其标准方程: 双曲线及其标准方程: 抛物线及其标准方程: 4直线与圆锥曲线: 注意点:(1)注意防止由于"零截距"和"无斜率”造成丢解(2)要学会变形使用两点间距离公式 ,当已知直线 的斜率 时

4、,公式变形为 或 ;当已知直线的倾斜角 时,还可以得到 或 (3)灵活使用定比分点公式,可以简化运算。(4)会在任何条件下求出直线方程.(5)注重运用数形结合思想研究平面图形的性质解析几何中的一些常用结论:1.直线的倾斜角的范围是,)2.直线的倾斜角与斜率的变化关系:当倾斜角是锐角是,斜率k随着倾斜角的增大而增大。当是钝角时,k与同增减。3.截距不是距离,截距相等时不要忘了过原点的特殊情形.4。两直线:L1: A1x+B1y+C1=0 L2: A2x+B2y+C2=0 L1L2 A1A2+B1B2=05。两直线的到角公式:L1到L2的角为,tan= 夹角为,tan= 注意夹角和到角的区别6.点

5、到直线的距离公式,两平行直线间距离的求法.7.有关对称的一些结论点(,)关于轴、轴、原点、直线y=x的对称点分别是(,),(,),(,),(,)如何求点(,)关于直线Ax+By+C=0的对称点直线Ax+By+C=0关于轴、轴、原点、直线y=x的对称的直线方程分别是什么,关于点(,)对称的直线方程又是什么?如何处理与光的入射与反射问题?曲线f(x,y)=0关于下列点和线对称的曲线方程为:()点(a.b)()轴()轴()原点()直线y=x()直线y=x()直线x点和圆的位置关系的判别转化为点到圆心的距离与半径的大小关系.点P(x0,y0),圆的方程:(xa)2+(yb)2=r2。如果(x0a)2+

6、(y0b)2r2点P(x0,y0)在圆外;如果 (x0a)2+(y0b)2<r2点P(x0,y0)在圆内;如果 (x0a)2+(y0b)2=r2点P(x0,y0)在圆上。10圆上一点的切线方程:点P(x0,y0)在圆x2+y2=r2上,那么过点P的切线方程为:x0x+y0y=r2.11.过圆外一点作圆的切线,一定有两条,如果只求出了一条,那么另外一条就是与轴垂直的直线.12。直线与圆的位置关系,通常转化为圆心距与半径的关系,或者利用垂径定理,构造直角三角形解决弦长问题。>r相离d=r相切dr相交13圆与圆的位置关系,经常转化为两圆的圆心距与两圆的半径之间的关系。设两圆的圆心距为d,

7、两圆的半径分别为r,Rd>r+R两圆相离dr+R两圆相外切|Rr|<dr+R两圆相交d|Rr两圆相内切dRr两圆内含d=0,两圆同心。14. 两圆相交弦所在直线方程的求法:圆C1的方程为:x2+y2+D1x+E1y+C1=0。圆C2的方程为:x2+y2+D2x+E2y+C2=0. 把两式相减得相交弦所在直线方程为:(D1D2)x+(E1E2)y+(C1C2)=015. 圆上一定到某点或者某条直线的距离的最大、最小值的求法.16。 焦半径公式:在椭圆 中,F、F分别左右焦点,P(x0,y0)是椭圆是一点,则:(1)PF1|=a+ex0 |PF2|=aex0 (2) 三角形PFF的面积

8、如何计算17圆锥曲线中到焦点的距离问题经常转化为到准线的距离。18直线y=kx+b和圆锥曲线f(x,y)=0交于两点P1(x1,y1) ,P2(x2,y2)则弦长P1P2= 19。 双曲线的渐近线的求法(注意焦点的位置)已知双曲线的渐近线方程如何设双曲线的方程。20. 抛物线中与焦点有关的一些结论:(要记忆)解题思路与方法:高考试题中的解析几何的分布特点是除在客观题中有4个题目外,就是在解答题中有一个压轴题。也就是解析几何没有中档题。且解析几何压轴题所考查的内容是求轨迹问题、直线和圆锥曲线的位置关系、关于圆锥曲线的最值问题等.其中最重要的是直线与圆锥曲线的位置关系。在复习过程中要注意下述几个问

9、题:(1)在解答有关圆锥曲线问题时,首先要考虑圆锥曲线焦点的位置,对于抛物线还应同时注意开口方向,这是减少或避免错误的一个关键。(2)在考查直线和圆锥曲线的位置关系或两圆锥曲线的位置关系时,可以利用方程组消元后得到二次方程,用判别式进行判断.但对直线与抛物线的对称轴平行时,直线与双曲线的渐近线平行时,不能使用判别式,为避免繁琐运算并准确判断特殊情况,此时要注意用好分类讨论和数形结合的思想方法。画出方程所表示的曲线,通过图形求解。 当直线与圆锥曲线相交时:涉及弦长问题,常用"韦达定理法"设而不求计算弦长(即应用弦长公式);涉及弦长的中点问题,常用"差分法”设而不求,

10、将弦所在直线的斜率、弦的中点坐标联系起来,相互转化。同时还应充分挖掘题目的隐含条件,寻找量与量间的关系灵活转化,往往就能事半功倍。(3)求圆锥曲线方程通常使用待定系数法,若能据条件发现符合圆锥曲线定义时,则用定义求圆锥曲线方程非常简捷.在处理与圆锥曲线的焦点、准线有关问题,也可反用圆锥曲线定义简化运算或证明过程.一般求已知曲线类型的曲线方程问题,可采用"先定形,后定式,再定量”的步骤.定形-指的是二次曲线的焦点位置与对称轴的位置.定式-根据”形”设方程的形式,注意曲线系方程的应用,如当椭圆的焦点不确定在哪个坐标轴上时,可设方程为mx2+ny2=1(m0,n0).定量-由题设中的条件找

11、到"式"中特定系数的等量关系,通过解方程得到量的大小。(4)在解与焦点三角形(椭圆、双曲线上任一点与两焦点构成的三角形称为焦点三角形)有关的命题时,一般需使用正余弦定理、和分比定理及圆锥曲线定义。(5)要熟练掌握一元二次方程根的判别式和韦达定理在求弦长、中点弦、定比分点弦、弦对定点张直角等方面的应用。(6)求动点轨迹方程是解析几何的重点内容之一,它是各种知识的综合运用,具有较大的灵活性,求动点轨迹方程的实质是将"曲线”化成”方程",将"形"化成”数”,使我们通过对方程的研究来认识曲线的性质. 求动点轨迹方程的常用方法有:直接法、定义法

12、、几何法、代入转移法、参数法、交轨法等,解题时,注意求轨迹的步骤:建系、设点、列式、化简、确定点的范围。(7)参数方程,请大家熟练掌握公式,后用化归的思想转化到普通方程即可求解. 第二部分 解析几何中的范围问题(研究性学习之二) 在直线与圆锥曲线相交问题中,关于直线的斜率或纵截距的取值范围,关于圆锥曲线的离心率、长轴长(或实轴长)、短轴长(或虚轴长)等有关参量的取值范围,是解析几何高考命题以及备考复习的重点问题。对此,一般情况下的解题思路,首先寻觅出(或直接利用)相关的不等式,进而通过这一不等式的演变解出有关变量的取值范围。在这里,我们对寻觅所给问题中相关不等式的主要途径和策略作以研讨。一、&

13、quot;题设条件中的不等式关系"之运用事物都是一分为二的。对于题设条件中明朗或隐蔽的不等关系,既可作为推导或求解的条件而增加难度,也可作为探索或寻觅范围的切入点而提供方便。在解决范围问题时,不失时机的利用明显的不等关系或发掘隐匿的不等式,往往成为解题的关键环节.例1、已知双曲线中心在原点,右顶点为A(1,0),点P、Q在双曲线右支上 ,点M(m,0)到直线AP的距离为1。(1)若直线AP的斜率为k,且 ,求实数m的取值范围;(2)当 时,APQ的内心恰好是点M,求此双曲线方程。分析:对于(1),已知直线AP的斜率k的取值范围,要求m的取值范围,首先需要导出k与m的关系式;对于(2)

14、,则要利用三角形内心的性质,三角形内心到三边距离相等;三角形内心与任一顶点的连线为相应的角的平分线;三角形面积等于半周长与内切圆半径之积等.至于运用哪一性质,还要视题设条件的具体情况来定夺.解:(1)由已知设直线AP的方程为yk(x1),即kxyk0点M到直线AP的距离为1 ,解得 或 所求m的取值范围为 。(2)根据已知条件设双曲线方程为 当 时,点M的坐标为( ).A(1,0), ,点M到直线AP的距离为1,APQ的内切圆半径r1,PAM45°, (不妨设点P在第一象限)直线PQ的方程为 ,直线AP的方程为yx1因此解得点P的坐标为( )将点P坐标代入双曲线方程 得 所求双曲线方

15、程为 即 .点评:这里的(1),是题设条件中明显的不等关系的运用;这里的(2),审时度势的求解出点P坐标,恰如”四两拨千斤".同学们请注意:一不要对三角形内心敬而生畏,二不可总想利用某一性质.沉着冷静地分析、认知问题,便会逐渐拨开云雾,寻出解题方向。例2、设椭圆 的两个焦点是 ,且椭圆上存在点P使得直线 垂直.(1)求实数m的取值范围;(2)设L是相应于焦点 的准线,直线 与L相交于点Q,若 ,求直线 的方程。分析:对于(1),要求m的取值范围,首先需要导出相关的不等式,由题设知,椭圆方程为第一标准方程,因而这里应有 , 便是特设条件中隐蔽的不等关系。对于(2),欲求直线 的方程,注

16、意到这里题设条件与点P的密切关系,故考虑从求点P坐标突破.解:(1)由题设知 设点P坐标为 ,则有 化简得 将与 联立,解得 m0,且 m1即所求m的取值范围为 。(2)右准线L的方程为 设点 ()将 代入得 又由题设知 由得 ,无解。()将 代入得 由题设得 由此解得m2从而有 于是得到直线 的方程为 点评:对于(1),解题的关键是发掘并利用题设条件中隐蔽的不等式 对于(2),以求解点P坐标 为方向,对已知条件 进行”数形转化”,乃是解决此类已知线段长度之比问题的避繁就简的基本策略.二、"圆锥曲线的有关范围"之运用我们在学习中已经看到,椭圆、双曲线和抛物线的"范

17、围”,是它们的第一几何性质。事实上,我们研究"范围”,一在于认知:认知圆锥曲线特性;二在于应用:"应用”它们来解决有关问题.例、以 为焦点的椭圆 与x轴交于A,B两点(1)过 作垂直于长轴的弦MN,求AMB的取值范围;(2)椭圆上是否存在点P,使APB120°?若存在,求出椭圆离心率e的取值范围.解:(1)基于椭圆的对称性,不妨设定 为右焦点,M在第一象限,则易得 ,设A(a,0),B(a,0),则AMB为直线AM到BM的角,又 利用公式得 此时注意到椭圆离心率的范围:0<e<1, 由得 由此解得 (2)设椭圆上存在点P使APB120°基于椭

18、圆的对称性,不妨设点P(x,y)在第一象限则有x>0,y>0根据公式得 整理得 又这里 代入得 此时注意到点P在椭圆上,故得 由得 由得 于是可知,当 时,点P存在且此时椭圆离心率的取值范围为 ;当 时,点P不存在.三、"一元二次方程有二不等实根的充要条件”之运用在直线与曲线相交问题中,直线与某圆锥曲线相交的大前提,往往由"相关一元二次方程有二不等实根"来体现。因此,对于有关一元二次方程的判别式0,求某量的值时,它是去伪存真的鉴别依据,求某量的取值范围时,它是导出该量的不等式的原始不等关系.例1、已知椭圆的一个顶点A(0,1),焦点在x轴上,且右焦点到

19、直线 的距离为3,若斜率不为0的直线l与椭圆交于不同两点M、N,使M、N关于过A点的直线对称,求直线l的斜率取值范围.解:(既设又解)设右焦点F(c,0),则由 又b1, 椭圆方程为 设直线l的方程为ykxm 将代入得 由题意 且 点P坐标为 又根据题意知M、N关于直线AP对称,故有 于是将代入得 因此可知,所求k的取值范围为 .例2、已知椭圆C的中心在原点上,焦点在x轴上,一条经过点 且方向向量为 的直线l交椭圆C于A、B两点,交x轴于点M,又 (1)求直线l的方程;(2)求椭圆C的长轴长的取值范围。解:(1)由题意设椭圆C的方程为 。直线l的方向向量为 亦为直线l的方向向量直线l的斜率 因

20、此,直线l的方程为 即 (2)设 将直线l的方程与椭圆方程联立,消去x得 由题设 且 又这里M(1,0)由 得 进而由得 由得 代入得 注意到由得 故由得 因而得1a3 由解出 代入并利用得 另一方面,再注意到 ,再由得 .因此有 即所求椭圆C的长轴的取值范围为 .点评:欲求圆锥曲线的某个重要参数的取值范围,需要利用或挖掘题目中的不等关系。在这里,我们由 导出关于a、b的等式之后,一方面利用了本题中人们熟知的>0确定的不等式,另一方面又利用了颇为隐蔽的新设方程中的大小关系:a>b>0,双方联合推出2a的范围。这里的不等关系的充分挖掘与应用,乃是解题成功的关键.四、”点在圆锥曲

21、线内部的充要条件”之运用所给问题中的某些点,注定要在相关圆锥曲线的内部。比如圆锥曲线的弦的内分点,又如圆锥曲线任意两弦的交点等。因此,点在圆锥曲线内部的充要条件,便成为寻求某量的取值范围的基本依据之一。其中,常用的充要条件为:1、 2、 3、 4、 例、已知椭圆的焦点为 ,过点 且垂直于x轴的直线与椭圆的一个交点为B, ,又椭圆上不同两点A、C满足条件: 成等差数列。(1)求椭圆的方程;(2)设弦AC的垂直平分线方程为ykxm,求m的取值范围。解:(1)由题设得2a10,c4a5,b3,c4椭圆方程为 (2)(设而不解)设 则由题意得 故有点 A、C在椭圆 上 两式相减得 由及所设得 弦AC的

22、垂直平分线方程为 由题意得 注意到当x4时椭圆上点的纵坐标为 ,又点 在椭圆内部故得 于是由、得 所求的取值范围为 点评:此题解法充分体现了"以我为主”的思想。以我为主:以我所引入的参数诠释已知条件,以我所引入的参数构造弦的斜率,以我对这一解的认知决定解题策略。.。.。,本解法以运用自设参数为主而将所给的ykxm放在十分次要的位置,从而使我们一直沉浸在所熟悉的探索中,待抬头看题设时,解题已经胜利在望。想一想:这里为什么可以不用直线方程ykxm与椭圆方程联立.五、"圆锥曲线的定义或几何性质中隐蔽的不等关系”之运用”相等”与"不等"是辩证的统一,根据”相等&

23、quot;与”不等”之间相互依存的辩证关系,椭圆与双曲线定义中显示了明朗的”相等”关系,那么必然蕴含这隐蔽的”不等”关系。因此,对于椭圆或双曲线的探求范围问题,适时认知并发掘出本题的不等关系,往往成为解题成败的关键环节。圆锥曲线的定义中隐含的不等关系主要有:1、 2、 例、已知双曲线 的左、右焦点分别为 、 ,若在其左支上存在点P且点P到左准线的距离与 成等比数列,求离心率e的取值范围.分析:寻求e的范围的一般途径为(1)认知或发掘出本题的不等关系;(2)将(1)中的不等关系转化为关于a,b,c的不等式;(3)将(2)中的不等式演变为关于e的不等式,进而通过解这一不等式导出所求范围.其中,有关

24、双曲线上点P处的两条焦点半径 的问题,定义中明朗的等量关系: 是认知或求值的理论基础;而定义中隐蔽的不等关系: 则是寻求参量范围的重要依据。解:(1)确立不等关系注意到这里 (2)不等关系演变之一设左支上的点P到左准线的距离为d,则由题意得 (变形目的:利用第二定义,寻找两焦半径与e的联系) 又点P在双曲线左支上 (点P在左支这一条件的应用) 由解得 将代入得 (3)不等关系演变之二:由得 故解得 于是可知,所求离心率e的范围为 第三部分 直线与圆锥曲线问题的解题策略(研究性学习之一)众所周知,直线与圆锥曲线的问题,是解析几何解答题的主要题型,是历年来高考备考的重点和高考命题的热点。多年备考的

25、实践经验告诉我们,欲更快地提高解决这类问题的实践能力,需要切实解决好以下两个问题:(1)条件或目标的等价转化; (2)对于交点坐标的适当处理。本文试从上述两个问题的研究切入,对直线与圆锥曲线问题的解题策略作初步探索,希望对高考备考有所帮助。一、条件或目标的认知与转化解题的过程是一系列转化的过程.从某种意义上说,解题,就是要将所解的题转化为已经解过的题。然而,转化的基础是认知-认知已知、目标的本质和联系。有了足够的认知基础,我们便可以着力实践化生为熟或化繁为简的转化。1、化生为熟化生为熟是解题的基本策略。在直线与圆锥曲线相交问题中,弦长问题及弦中点问题是两类基本问题.因此,由直线与圆锥曲线相交引

26、出的线段间的关系问题,要注意适时向弦长或弦中点问题转化。一但转化成功,解题便得以驾轻就熟,胜券在握。(1)向弦中点问题转化例1.已知双曲线 =1(a0,b>0)的离心率 ,过点A(0,b)和B(a,0)的直线与原点间的距离为 (1)求双曲线方程;(2)若直线(km0)与双曲线交于不同两点C、D,且C、D两点都在以A为圆心的同一个圆上,求m的取值范围.略解:(1)所求双曲线方程为(过程略)(2)由 消去y得: 由题意知,当 时, 设 中点 则C、D均在以A为圆为的同一圆上 又 于是由得 由代入得 ,解得m0或m4 于是综合、得所求m的范围为 (2)向弦长问题转化例2设F是椭圆 的左焦点,M

27、是C1上任一点,P是线段FM上的点,且满足 (1)求点P的轨迹C2的方程;(2)过F作直线l与C1交于A、D两点,与C2交点B、C两点,四点依A、B、C、D顺序排列,求使 成立的直线l 的方程。分析:为避免由代换 引发的复杂运算,寻觅替代 的等价条件:设弦AD、BC的中点分别为O1、O2,则,故 ,据此得 于是,所给问题便转化为弦长与弦中点问题。略解:椭圆C1的中心 点P分 所成的比=2。(1)点P的轨迹C2的方程为 (过程略)(2)设直线l的方程为 代入椭圆C1的方程得 ,故有 故弦AD中点O1坐标为 代入椭圆C2的方程得 ,又有 故弦BC中点O2坐标为 由、得 注意到 于是将、代入并化简得

28、: 由此解得 .因此,所求直线l的方程为 2化繁为简解析几何是用代数计算的方法解决几何问题,因此,解答解析几何问题,人们都有这样的共同感受:解题方向或途径明朗,但目标难以靠近或达到。解题时,理论上合理的思路设计能否在实践中得以实现?既能想到,又能做到的关键,往往在于能否化繁为简.化繁为简的策略,除去”化生为熟”之外,重要的当数"借重投影"或”避重就轻”。(1)借助投影对于线段的定比分点以及其它复杂的线段间关系的问题,当题设条件的直接转化颇为繁杂时,不妨运用当初推导定比分点坐标公式的基本方法;将线段上有关各点向x轴(或y轴或其它水平直线)作以投影,进而利用平行线分线段成比例定

29、理推理或转化,这一手法往往能够有效地化解难点,将人们引入熟悉的解题情境.例3如图,自点M(1,1)引直线l交抛物线 于P1 、P2两点,在线段P1 、P2上取一点Q,使 、 、 的倒数依次成等差数列,求点Q的轨迹方程。解:设 又设直线l的方程为 代入 得 由题意得 或 且 又由题意得 作P1、Q、P2在直线y=1上的投影P1、Q、P2(如图)又令直线l的倾斜角为 则由 得 同理, 将上述三式代入得 将代入得 将代入得 于是由、消去参数k得 再注意到式,由得 或 因此,由、得所求点Q的轨迹方程为 (2)避重就轻事物都是一分为二的,复杂问题中有关事物之间你中有我、我中有你的局面,在给我们解题制造麻

30、烦的同时,也会为我们侧面迂回、避重就轻带来机会。例4已知 点P、Q在椭圆 上,椭圆中心为O,且 , 求椭圆中心O到弦PQ的距离.分析:这里需要P、Q点坐标,对此,如果直面直线PQ方程和椭圆方程联立方程组,则不论是求解P、Q坐标,还是利用所设P、Q坐标,都不免招致复杂局面。于是转而考虑侧面迂回,避重就轻,同时,注意到P、Q两点的双重属性,想到避开正面求解,而由直线OP(或OQ)方程和椭圆方程联立方程组解出点P(或点Q)坐标.解(避重就轻,解而不设):设 则由 得 (1)当点P、Q不在坐标轴上时,设直线OP的方程 则直线OQ的方程为 将代入椭圆方程 易得 将代入椭圆方程 易得 由、得 又在 中作

31、于H,于是由 及式得 = (2)当点P、Q在坐标轴上时,同样可得 ,从而有 .于是由(1)(2)知所求椭圆中心O到弦PQ的距离为 。直线与圆锥曲线相交的问题,适当处置交点坐标是解题繁简乃至解题成败的关键环节。循着教材中关于曲线交点的定位,直线与圆锥曲线的交点坐标,首先是立足于"解”,其次是辅助于”设"。于是,在宏观上围绕着"解"与"设”的选择,产生出两对解题思路:解而不设与设而不解;既设又解与不解。在这里,"设"是举手之劳,问题在于,在一个具体问题中,"解"的火候如何把握?”不解"的时机如何捕捉

32、?以下继续作以探索.二、求解交点坐标的”度"的把握个体与整体是辩证的统一,循着"个体"与”整体”的辩证关系,立足于"解"交点坐标,主要是以下两种选择:1、半心半意,解至中途从认识目标切入,如果目标不是交点的横坐标或纵坐标的个体,而是关于交点横坐标(或纵坐标)的和与积的对称式,则一般选择从直线方程与曲线方程的联立方程组入手,解至中途运用韦达定理,进而对目标进行转化、靠拢,直至利用上述结果解决问题。例1.设斜率为2的直线与抛物线 相交于A、B两点,以线段AB为边作矩形ABCD,使 ,求矩形ABCD的对角线交点M的轨迹方程。解:设 直线AB的方程为

33、。由 由题意 由韦达定理得 再设AB中点为 ,则有 , 注意到四边形ABCD为矩形,故有 ,且 ,由此得 由(4)得 代入(5)得 化简得 再注意到中 ,由(5)得 因此由、得所求动点M的轨迹方程为 。点评:本例是"立足于一条直线与曲线相交”的问题。这里所说的"立足于一条直线与曲线相交"的问题,是指这样两种题型:(1)问题由一直线与曲线相交引出;(2)问题中虽然出现多条直线与同一曲线相交,但这些直线的引出存在着明显的顺序(或依赖关系),整个问题构建在某一条直线与曲线相交的基础之上,对此,我们的求解仍倚仗于对交点坐标"既设又解”的策略.这里的”解”,是解直

34、线方程与曲线方程所联立的方程组,是"半心半意"地求解,解至中途运用韦达定理,因此,此类问题的解题三部曲为(1)全心全意地设出交点坐标;(2)”半心半意”地求解上述方程组,解至中途运用韦达定理;(3)对题设条件主体进行分析、转化,使之靠拢并应用(2)的结果导出既定目标。2、真心实意,求解到底当目标的转化结果不是交点横标(或纵标)的对称式,而是交点坐标的个体时,则需要真心实意地将求解交点坐标进行到底.例2.正方形ABCD的中心为M(3,0),一条顶点在原点,焦点在X轴正半轴上的抛物线E,一条斜率为 的直线l,若A、B两点在抛物线E上,而C、D两点在直线l上,求抛物线E和直线l的

35、方程。解:由题意设抛物线E的方程为 ,直线l的方程为 .又设正方形ABCD的(一条)对角线的斜率为k,则由 直线AM、BM的方程分别为 再设 则由 得 又点A、B在抛物线E上,故有 于是由、解得 。故得A(4,2)、B(1,1)、 因此可知,所求抛物线E的方程为 ; 所求直线l方程为 。点评:上述问题中出现"相对独立的多条直线与同一曲线相交",即问题中多条直线的出现没有确定的顺序或依赖关系,各条直线之间具有相对独立性。对此,我们仍然运用对交点坐标"既设又解"的策略,不过,这里的"解"不是解直线方程与曲线方程所联立的方程组,而是解关于所

36、设交点坐标的等式所联立的方程组;这里的"解"不是”半心半意"地解至中途运用韦达定理,而是全心全意地去解出交点坐标,因此,此类问题的解题三部曲为:(1)全心全意地设出交点坐标;(2)全心全意地求解所设交点坐标满足的方程所联立的方程组,解出所设交点坐标;(3)利用(2)的结果追求既定目标。三、求解交点坐标的转换与回避解决直线与圆锥曲线相交问题招致复杂局面或陷入绝境,究其原因,大多是求解直线与圆锥曲线所联立方程组惹的祸.因此,面对所给问题,当能预见到求解上述方程组的繁难程度时,能转换正面求解(交点坐标)便尽量转换,能回避正面求解(交点坐标)便尽量回避。1、设而不解这里所

37、谓的"设而不解”,是指设出交点坐标之后,借助已知方程,运用交点坐标去表示已知条件或主要目标。其中,用所设交点坐标去构造有关直线的斜率最为多见.例1设椭圆 的上半部有不同三点A、B、C,它们到同一焦点的距离依次成等差数列,且点B的纵坐标与椭圆的半焦距相等,求线段AC的中垂线在y轴上的截距。分析:考察线段AC的中垂线方程,易知其斜率由点A、C同名坐标的差式表出,弦中点由点A、C同名坐标的和式表出。由此想到对交点坐标"设而不解",并借助焦点半径公式求解。解:设 ,弦AC中点M(x0,y0).由已知椭圆方程得 又运用椭圆第二定义可得 , 由题设条件得 而 此时,注意到点A

38、、C在椭圆 上,故有 得 代入得 由此得 由、得 ,即AC中点 于是可知弦AC的中垂线方程为 在中令x=0得 由此可知,所求弦AC的中垂线在y轴上的截距为 2、不设不解这是解决直线与曲线相交问题的至高境界。因此,欲适时地正确选择对交点坐标”不设不解”,需要我们对问题或图形本质的深刻认知,需要我们对有关知识的深厚积淀或升华.(1)利用圆锥曲线定义回避交点坐标例2已知F1、F2为椭圆的两个焦点,过F2的直线交椭圆于P、Q两点, ,且 ,求椭圆的离心率。解:注意到这里涉及点P处两条焦点半径,故考虑利用椭圆定义1。设椭圆方程为 。又设 ,则由题意得 根据椭圆定义得 代入得 ,解得 再由 得 代入得 化

39、简得 ,由此解得 。(2)借助有关图形性质回避交点坐标例3已知直线l: 与 相交于A、B两点,当 时,求C的方程。提示:圆心C到弦AB的距离(弦心距) 注意到 由圆的弦的性质得 ,由此解得a的值。(3)利用有关问题的深入认知回避交点坐标这是处置直线与曲线乃至两曲线相交问题的重要策略,现以例4示范说明。例4已知圆M与圆 相交于不同两点A、B,所得公共弦AB平行于已知直线 ,又圆M经过点C(2,3),D(1,4),求圆M的方程。解(利用对圆的根轴方程的认知廻避交点坐标):设圆M方程为 又已知圆方程为 -得上述两圆公共弦AB所在直线方程 由题设得 注意到点C、D在圆M上,故有 将、联立解得 所求圆M

40、的方程为 四、高考真题1。已知椭圆的中心为坐标原点O,焦点在x轴上,斜率为1且过椭圆在焦点F的直线交椭圆于A、B两点, 与 共线。(1)求椭圆的离心率;(2)设M为椭圆上任意一点,且 ,证明 为定值。分析:(1)求椭圆离心率,首先要求关于a,b,c的等式.为此,从设出椭圆方程与直线AB的方程切入,运用对A、B坐标"既设又解”的策略;(2)注意到这里的点为椭圆上任意一点,故考虑对点的坐标”设而不解”。解:(1)设椭圆方程为 则直线AB方程为 设 将代入椭圆方程 得 由题意 ,显然成立由韦达定理得 又 , , 与 共线 即所求椭圆的离心率为 (2)由(1)得 ,椭圆方程化为 设 ,由题设

41、得 点M在椭圆上 又由(1)知, 而 , 将、代得 , 即 为定值。点评:对于(1),立足于对A、B坐标"既设又解”,对 与 共线的充要条件 ,先"转化"而后”代入",与先”代入"而后化简比较,计算量要明显减少。因此,诸如此类的问题,要注意选择”代入”的形式或时机,以求减少解题的计算量。2.P、Q、M、N四点都在椭圆 上,F为椭圆在y轴正半轴上的焦点,已知 与 共线, 与 共线,且 ,求四边形PMQN的面积的最小值和最大值。分析:这里 ,b=1,c=1,故F(0,1)由题设知 ,四边形PMQN的面积等于 ,因此解题从求 , 切入。解:这里 ,b=1,c=1,F(0,1),由 得 ,即 直线PQ,MN中至少有一条直线斜率存在。不妨设PQ的斜率为k,则直线PQ的方程为 又设 将代入椭圆方程得 且 (1)当 时,直线MN的斜率为 ,同理可得 四边形PMQN的面积 令 ,则 (当且仅当 时等号成立) 当 时, ,S是以 为自变量的增函数 (2)当 时,MN为椭圆的长轴,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论