版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、小学数学速算与巧算方法例解【转】 2011-04-17 21:04:55| 分类: 教海拾贝|举报|字号 订阅速算与巧算 在小学数学中,关于整数、小数、分数的四则运算,怎么样才能算得既快又准确呢?这就需要我们熟练地掌握计算法则和运算顺序,根据题目本身的特点,综合应用各种运算定律和性质,或利用和、差、积、商变化规律及有关运算公式,选用合理、灵活的计算方法。速算和巧算不仅能简便运算过程,化繁为简,化难为易,同时又会算得又快又准确。一、“凑整”先算1.计算:(1)24+44+56(2)53+36+47解:(1)24+44+56=24+(44+56)=24+100=124这样想:因为44+56=100
2、是个整百的数,所以先把它们的和算出来.(2)53+36+47=53+47+36=(53+47)+36=100+36=136这样想:因为53+47=100是个整百的数,所以先把+47带着符号搬家,搬到+36前面;然后再把53+47的和算出来.2.计算:(1)96+15(2)52+69解:(1)96+15=96+(4+11)=(96+4)+11=100+11=111这样想:把15分拆成15=4+11,这是因为96+4=100,可凑整先算.(2)52+69=(21+31)+69=21+(31+69)=21+100=121这样想:因为69+31=100,所以把52分拆成21与31之和,再把31+69=
3、100凑整先算.3.计算:(1)63+18+19(2)28+28+28解:(1)63+18+19=60+2+1+18+19=60+(2+18)+(1+19)=60+20+20=100这样想:将63分拆成63=60+2+1就是因为2+18和1+19可以凑整先算.(2)28+28+28=(28+2)+(28+2)+(28+2)-6=30+30+30-6=90-6=84这样想:因为28+2=30可凑整,但最后要把多加的三个2减去.二、改变运算顺序:在只有“+”、“-”号的混合算式中,运算顺序可改变计算:(1)45-18+19(2)45+18-19解:(1)45-18+19=45+19-18=45+(
4、19-18)=45+1=46这样想:把+19带着符号搬家,搬到-18的前面.然后先算19-18=1.(2)45+18-19=45+(18-19)=45-1=44这样想:加18减19的结果就等于减1.三、计算等差连续数的和相邻的两个数的差都相等的一串数就叫等差连续数,又叫等差数列,如:1,2,3,4,5,6,7,8,91,3,5,7,92,4,6,8,103,6,9,12,154,8,12,16,20等等都是等差连续数.1. 等差连续数的个数是奇数时,它们的和等于中间数乘以个数,简记成:(1)计算:1+2+3+4+5+6+7+8+9=5×9 中间数是5=45 共9个数(2)计算:1+3
5、+5+7+9=5×5 中间数是5=25 共有5个数(3)计算:2+4+6+8+10=6×5 中间数是6=30 共有5个数(4)计算:3+6+9+12+15=9×5 中间数是9=45 共有5个数(5)计算:4+8+12+16+20=12×5 中间数是12=60 共有5个数2. 等差连续数的个数是偶数时,它们的和等于首数与末数之和乘以个数的一半,简记成:(1)计算:1+2+3+4+5+6+7+8+9+10=(1+10)×5=11×5=55共10个数,个数的一半是5,首数是1,末数是10.(2)计算:3+5+7+9+11+13+15+17=
6、(3+17)×4=20×4=80共8个数,个数的一半是4,首数是3,末数是17.(3)计算:2+4+6+8+10+12+14+16+18+20=(2+20)×5=110共10个数,个数的一半是5,首数是2,末数是20.四、基准数法(1)计算:23+20+19+22+18+21解:仔细观察,各个加数的大小都接近20,所以可以把每个加数先按20相加,然后再把少算的加上,把多算的减去.23+20+19+22+18+21=20×6+3+0-1+2-2+1=120+3=1236个加数都按20相加,其和=20×6=120.23按20计算就少加了“3”,所以
7、再加上“3”;19按20计算多加了“1”,所以再减去“1”,以此类推.(2)计算:102+100+99+101+98解:方法1:仔细观察,可知各个加数都接近100,所以选100为基准数,采用基准数法进行巧算.102+100+99+101+98=100×5+2+0-1+1-2=500方法2:仔细观察,可将5个数重新排列如下:(实际上就是把有的加数带有符号搬家)102+100+99+101+98=98+99+100+101+102=100×5=500可发现这是一个等差连续数的求和问题,中间数是100,个数是5. 加法中的巧算1.什么叫“补数”?两个数相加,若能恰好凑成整十、整百
8、、整千、整万,就把其中的一个数叫做另一个数的“补数”。如:1+9=10,3+7=10,2+8=10,4+6=10,5+5=10。又如:11+89=100,3367=100,22+78=100,44+56=100,55+45=100,在上面算式中,1叫9的“补数”;89叫11的“补数”,11也叫89的“补数”.也就是说两个数互为“补数”。对于一个较大的数,如何能很快地算出它的“补数”来呢?一般来说,可以这样“凑”数:从最高位凑起,使各位数字相加得9,到最后个位数字相加得10。如: 8765512345, 4680253198,8736212638,下面讲利用“补数”巧算加法,通常称为“凑整法”。
9、2.互补数先加。例1 巧算下面各题:36+87+6499+136101 136197263928解:式=(3664)87=10087=187式=(99101)136=200+136=336式=(1361639)(97228)=2000+1000=30003.拆出补数来先加。例2 188873 548996 9898203解:式=(188+12)+(873-12)(熟练之后,此步可略)200+861=1061式=(548-4)(9964)=544+1000=1544式=(9898102)(203-102)=10000+101=101014.竖式运算中互补数先加。如:二、减法中的巧算1.把几个互为
10、“补数”的减数先加起来,再从被减数中减去。例 3 300-73-27 1000-90-80-20-10解:式= 300-(73 27)300-100=200式=1000-(90802010)1000-2008002.先减去那些与被减数有相同尾数的减数。例4 4723-(723189) 2356-159-256解:式=4723-723-1894000-189=3811式=2356-256-1592100-159=19413.利用“补数”把接近整十、整百、整千的数先变整,再运算(注意把多加的数再减去,把多减的数再加上)。例 5 506-397323-189467997987-178-222-390
11、解:式=5006-400+3(把多减的 3再加上)=109式=323-200+11(把多减的11再加上)=123+11134式=4671000-3(把多加的3再减去)1464式=987-(178222)-390987-400-400+10=197三、加减混合式的巧算1.去括号和添括号的法则在只有加减运算的算式里,如果括号前面是“”号,则不论去掉括号或添上括号,括号里面的运算符号都不变;如果括号前面是“-”号,则不论去掉括号或添上括号,括号里面的运算符号都要改变,“+”变“-”,“-”变“+”,即:a(bcd)abcda-(bad)a-b-c-da-(b-c)a-b+c例6 100(102030
12、) 100-(1020+3O) 100-(30-10)解:式=100102030=160式=100-10-20-30=40式=100-301080例7 计算下面各题: 100102030 100-10-20-30 100-3010解:式=100(10+20+30)=10060=160式=100-(1020+30)100-60=40式=100-(30-10)=100-20=802.带符号“搬家”例8 计算 32546-12554解:原式=325-12546+54(325-125)+(4654)=200+100300注意:每个数前面的运算符号是这个数的符号.如+46,-125,+54.而325前面
13、虽然没有符号,应看作是+325。3.两个数相同而符号相反的数可以直接“抵消”掉例9 计算9+2-93解:原式=9-92+3=54.找“基准数”法几个比较接近于某一整数的数相加时,选这个整数为“基准数”。例10 计算 78+768382+778079856401.两数的乘积是整十、整百、整千的,要先乘.为此,要牢记下面这三个特殊的等式:5×2=1025×4=100125×8=1000例1 计算123×4×25 125×2×8×25×5×4解:式=123×(4×25)=123
14、215;10012300式=(125×8)×(25×4)×(5×2)=1000×100×10=10000002.分解因数,凑整先乘。例 2计算 24×25 56×125 125×5×32×5解:式=6×(4×25)=6×100=600式=7×8×125=7×(8×125)=7×1000=7000式=125×5×4×8×5=(125×8)×
15、(5×5×4)=1000×100=1000003.应用乘法分配律。例3 计算 175×34175×6667×12+67×3567×52+6解:式=175×(34+66)=175×100=17500式=67×(1235521) 67×1006700(原式中最后一项67可看成 67×1)例4 计算 123×101 123×99解:式=123×(1001)=123×10012312300123=12423式=123×(10
16、0-1)=12300-123=121774.几种特殊因数的巧算。例5 一个数×10,数后添0;一个数×100,数后添00;一个数×1000,数后添000;以此类推。如:15×10=15015×100=150015×100015000例6 一个数×9,数后添0,再减此数;一个数×99,数后添00,再减此数;一个数×999,数后添000,再减此数; 以此类推。如:12×9120-1210812×99120012118812×99912000-12=11988例7 一个偶数乘以5,
17、可以除以2添上0。如:6×53016×580116×5=580。例8 一个数乘以11,“两头一拉,中间相加”。如 2222×11244422456×1127016例9 一个偶数乘以15,“加半添0”.24×15(24+12)×10360因为24×15 24×(10+5)24×(1010÷2)=24×10+24×10÷2(乘法分配律)24×10+24÷2×10(带符号搬家)(24+24÷2)×10(乘法分配律
18、)例10 个位为5的两位数的自乘:十位数字×(十位数字加1)×100+25如15×15=1×(1+1)×100+25=22525×25=2×(2+1)×100+25=62535×35=3×(3+1)×100+25=122545×45=4×(4+1)×100+25=202555×55=5×(5+1)×100+25=302565×656×(6+1)×100+25=422575×75=7
19、15;(7+1)×100+25562585×85=8×(8+1)×100+25=722595×959×(9+1)×100259025还有一些其他特殊因数相乘的简便算法,有兴趣的同学可参看算得快一书。二、除法及乘除混合运算中的巧算1.在除法中,利用商不变的性质巧算商不变的性质是:被除数和除数同时乘以或除以相同的数(零除外),商不变.利用这个性质巧算,使除数变为整十、整百、整千的数,再除。例11 计算110÷53300÷25 44000÷125解:110÷5=(110×2)
20、47;(5×2)220÷10=223300÷25(3300×4)÷(25×4)13200÷100132 44000÷125=(44000×8)÷(125×8)352000÷10003522.在乘除混合运算中,乘数和除数都可以带符号“搬家”。例12 864×27÷54864÷54×27=16×27=4323.当n个数都除以同一个数后再加减时,可以将它们先加减之后再除以这个数。例13 13÷95÷9 21
21、47;5-6÷52090÷24-482÷24187÷12-63÷12-52÷12解:13÷9+5÷9=(135)÷9=18÷9221÷5-6÷5(21-6)÷515÷5=32090÷24-482÷24(2090-482)÷241608÷2467187÷12-63÷12-52÷12(187-63-52)÷1272÷12=64.在乘除混合运算中“去括号”或添“括号”的方法
22、:如果“括号”前面是乘号,去掉“括号”后,原“括号”内的符号不变;如果“括号”前面是除号,去掉“括号”后,原“括号”内的乘号变成除号,原除号就要变成乘号,添括号的方法与去括号类似。即a×(b÷c)=a×b÷c 从左往右看是去括号,a÷(b×c)a÷b÷c 从右往左看是添括号。a÷(b÷c)a÷b×c例14 1320×500÷2504000÷125÷85600÷(28÷6)372÷162×54299
23、7×729÷(81×81)解: 1320×500÷2501320×(500÷250)=1320×226404000÷125÷84000÷(125×8)4000÷100045600÷(28÷6)=5600÷28×6=200×6=1200372÷162×54=372÷(162÷54)372÷31242997×729÷(81×81)2997
24、215;729÷81÷81(2997÷81)×(729÷81)37×9333例1 计算999999999999999解:在涉及所有数字都是9的计算中,常使用凑整法.例如将999化成10001去计算.这是小学数学中常用的一种技巧. 999999999999999(101)(100-1)(10001)(10000-1) (100000-1)10100100010000100000-5111110-5111105.例2 计算19999919999199919919解:此题各数字中,除最高位是1外,其余都是9,仍使用凑整法.不过这里是加1凑整
25、.(如 1991200) 19999919999199919919(199991)(199991)(19991)(1991) (191)520000020000200020020-5222220-522225.例3 计算(1351989)(2461988)解法2:先把两个括号内的数分别相加,再相减.第一个括号内的数相加的结果是:从1到1989共有995个奇数,凑成497个1990,还剩下995,第二个括号内的数相加的结果是:从2到1988共有994个偶数,凑成497个1990.1990×4979951990×497995.例4 计算 389387383385384386388解法1:认真观察每个加数,发现它们都和整数390接近,所以选390为基准数. 389387383385384386388390×71375642730282702.解法2:也可以选380为基准数,则有 389387383385384386388380×797354682660422702.例5 计算(4942494349
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年经济师考试工商管理高级经济实务试卷与参考答案
- 医院内部的自查报告
- 小学生社会实践报告
- 深基坑相关知识培训课件
- 材料科学与工程认识实习报告
- 混凝土拌合站节能减排方案
- 城市更新项目SMW工法桩施工方案
- 电力行业锅炉维护保养方案
- 文化产业项目结算及转资方案
- 餐饮业职业卫生应急预案
- 5.32.4园路、广场硬质铺装工程检验批质量验收记录
- 相逢在花季――青春期心理健康
- 市场监管局执法文书可编辑版现场检查笔录
- 布草洗涤程序
- 最新小学四年级部编语文上册-第四单元考点梳理(含答案)
- IPC4552中文.doc
- 和泉PLC编程软件
- 中学30+15高效课堂教学改革实施方案
- 《Flash CC动画制作》教学大纲 课程标准 最全最新
- 高喷防渗技术交底
- 大班语言《风在哪里》ppt课件[共12页]
评论
0/150
提交评论