题目圆的方程_第1页
题目圆的方程_第2页
题目圆的方程_第3页
题目圆的方程_第4页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、题目: 圆的方程高考要求: 1.掌握圆的标准方程和一般方程。 2.了解参数方程的概念 理解圆的参数方程。3.掌握圆的方程的两种形式并会根据具体情况选择其中的一种解题;4.掌握圆系方程并会运用它解决有关问题;5.灵活运用圆的几何性质解决问题。知识要点:1圆的定义平面内与定点距离等于定长的点的集合(轨迹)叫圆2.圆的标准方程圆心为(a,b),半径为r的圆的标准方程为方程中有三个参量a、b、r,因此三个独立条件可以确定一个圆3.圆的一般方程二次方程x2+y2+dx+ey+f=0(*)配方得(x+)2+(y+)2=把方程其中,半径是,圆心坐标是叫做圆的一般方程。(1)圆的一般方程体现了圆方程的代数特点

2、:x2、y2项系数相等且不为零 没有xy项。(2)当d2+e24f=0时,方程(*)表示点(,);当d2+e24f0时,方程(*)不表示任何图形(3)根据条件列出关于d、e、f的三元一次方程组,可确定圆的一般方程。4.二元二次方程ax2+bxy+cy2+dx+ey+f=0表示圆的充要条件若二元二次方程ax2+bxy+cy2+dx+ey+f=0表示圆,则有a=c0,b=0,这仅是二元二次方程表示圆的必要条件,不充分。在a=c0,b=0时,二元二次方程化为x2+y2+x+y+=0,仅当d2+e24af0时表示圆。故ax2+bxy+cy2+dx+ey+f=0表示圆的充要条件是:a=c0,b=0,d2

3、+e24af05.线段ab为直径的圆的方程: 若,则以线段ab为直径的圆的方程是6.经过两个圆交点的圆系方程:经过,的交点的圆系方程是:在过两圆公共点的图象方程中,若=1,可得两圆公共弦所在的直线方程。 7.经过直线与圆交点的圆系方程: 经过直线与圆的交点的圆系方程是:8.确定圆需三个独立的条件(1)标准方程: , (2)一般方程:,( 题型讲解:例1.与点a(-1,0)和点b(1,0)连成直线的斜率之积为-1的动点p的轨迹为 a.x2+y2=1 b.x2-y2=1(x±1) c.x2+y2=1 (y0) d.y=例2(1)求经过点a(5,2),b(3,2),圆心在直线2xy3=0上

4、的圆的方程;(2)求以o(0,0),a(2,0),b(0,4)为顶点的三角形oab外接圆的方程解:(1)设圆心p(x0,y0),则有解得 x0=4, y0=5, 半径r=, 所求圆的方程为(x4)2+(y5)2=10(2)采用一般式,设圆的方程为x2+y2+dx+ey+f=0,将三个已知点的坐标代入列方程组解得:d=2, e=4, f=0点评:第(1),(2)两小题根据情况选择了不同形式例3. 求与轴x轴相切,圆心在直线3xy=0上,且被直线x-y=0截下的弦长2的圆的方程分析: 利用圆的性质:半弦、半径和弦心距构成的直角三角形解:法一:设所求圆点方程是(x-a)2+(y-b)2=r2,则圆心

5、(a,b)到直线xy=0的距离为,即2r2=(a-b)2+14 由于所求圆与x轴相切,r2=b2 又所求圆心在直线3x-y=0上,3a-b=0 联立解得 a=1,b=3,r3=9,或a=-1,b=-3,r2=9,故所求圆方程为(x-1)2+(y-3)2=9或(x+1)2+(y+3)2=9法二:设所求圆点方程为x2+y2+dx+ey+f=0圆心为半径为令y=0,得x2+dx+f=0,由圆与x轴相切,得=0,即d2=4f 又圆心到直线x-y=0的距离为。由已知得,即(d-e)2+56=2(d2+e2-4f) 又圆心在直线3x-y=0上,3d-e=0 联立得d=-2,e=-6,f=1或d=2,e=6

6、,f=1故所求圆方程为x2+y2-2x-6y+1=0,或x2+y2+2x+6y+1=0点评:在解决求圆的方程这类问题时,应当注意以下几点:(1)确定圆方程首先明确是标准方程还是一般方程;(2)根据几何关系(如本例的相切、弦长等)建立方程求得a、b、r或d、e、f;(3)待定系数法的应用,解答中要尽量减少未知量的个数例4. 求过直线2x+y+4=0和圆x2+y2+2x4y+1=0的交点,且面积最小的圆的方程解:因为通过两个交点的动圆中,面积最小的是以此二交点为直径端点的圆,于是解方程组得交点a(11/5,2/5), b(3,2),利用圆的直径式方程得:(x+11/5)(x+3) +(y2/5)(

7、y2)=0,化简整理得 (x+13/5)2+(y6/5)2=4/5例5. 设方程,若该方程表示一个圆,求m的取值范围及这时圆心的轨迹方程。解:配方得: 该方程表示圆,则有,得,此时圆心的轨迹方程为,消去m,得,由得x=m+3,所求的轨迹方程是,点评:方程表示圆的充要条件,求轨迹方程时,一定要讨论变量的取值范围,如题中例6.已知点p(x,y)为圆 x2+y2=4上的动点,则 x+y 的最大值为_小结:1不论圆的标准方程还是一般方程,都有三个字母(a、b、r或d、e、f)的值需要确定,因此需要三个独立的条件利用待定系数法得到关于a、b、r(或d、e、f)的三个方程组成的方程组,解之得到待定字母系数的值2求圆的方程的一般步骤:(1)选用圆的方程两种形式中的一种(若知圆上三个点的坐标,通常选用一般方程;若给出圆心的特殊位置或圆心与两坐标间的关系,通常选

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论