版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、观察下列演示过程,注意当分割加细时,观察下列演示过程,注意当分割加细时,矩形面积和与曲边梯形面积的关系矩形面积和与曲边梯形面积的关系学习目学习目标:标:观察下列演示过程,注意当分割加细时,观察下列演示过程,注意当分割加细时,矩形面积和与曲边梯形面积的关系矩形面积和与曲边梯形面积的关系学习目学习目标:标:观察下列演示过程,注意当分割加细时,观察下列演示过程,注意当分割加细时,矩形面积和与曲边梯形面积的关系矩形面积和与曲边梯形面积的关系学习目学习目标:标:观察下列演示过程,注意当分割加细时,观察下列演示过程,注意当分割加细时,矩形面积和与曲边梯形面积的关系矩形面积和与曲边梯形面积的关系学习目学习目
2、标:标:观察下列演示过程,注意当分割加细时,观察下列演示过程,注意当分割加细时,矩形面积和与曲边梯形面积的关系矩形面积和与曲边梯形面积的关系学习目学习目标:标:学习目学习目标:标:观察下列演示过程,注意当分割加细时,观察下列演示过程,注意当分割加细时,矩形面积和与曲边梯形面积的关系矩形面积和与曲边梯形面积的关系观察下列演示过程,注意当分割加细时,观察下列演示过程,注意当分割加细时,矩形面积和与曲边梯形面积的关系矩形面积和与曲边梯形面积的关系学习目学习目标:标:观察下列演示过程,注意当分割加细时,观察下列演示过程,注意当分割加细时,矩形面积和与曲边梯形面积的关系矩形面积和与曲边梯形面积的关系学习
3、目学习目标:标:观察下列演示过程,注意当分割加细时,观察下列演示过程,注意当分割加细时,矩形面积和与曲边梯形面积的关系矩形面积和与曲边梯形面积的关系学习目学习目标:标:观察下列演示过程,注意当分割加细时,观察下列演示过程,注意当分割加细时,矩形面积和与曲边梯形面积的关系矩形面积和与曲边梯形面积的关系学习目学习目标:标:观察下列演示过程,注意当分割加细时,观察下列演示过程,注意当分割加细时,矩形面积和与曲边梯形面积的关系矩形面积和与曲边梯形面积的关系学习目学习目标:标:观察下列演示过程,注意当分割加细时,观察下列演示过程,注意当分割加细时,矩形面积和与曲边梯形面积的关系矩形面积和与曲边梯形面积的
4、关系学习目学习目标:标:观察下列演示过程,注意当分割加细时,观察下列演示过程,注意当分割加细时,矩形面积和与曲边梯形面积的关系矩形面积和与曲边梯形面积的关系学习目学习目标:标:观察下列演示过程,注意当分割加细时,观察下列演示过程,注意当分割加细时,矩形面积和与曲边梯形面积的关系矩形面积和与曲边梯形面积的关系学习目学习目标:标:当分割点无限增多时,小矩形的面积和当分割点无限增多时,小矩形的面积和=曲边梯形的面积曲边梯形的面积求由连续曲线求由连续曲线y= =f(x)对应的对应的曲边梯形曲边梯形面积的方法面积的方法 (2)取近似求和取近似求和:任取任取x xi xi- -1, xi,第,第i个小曲边
5、梯形的面积用高个小曲边梯形的面积用高为为f(x xi)而宽为而宽为D Dx的小矩形面积的小矩形面积f(x xi)D Dx近似之。近似之。 (3)取极限取极限:,所求曲边所求曲边梯形的梯形的面积面积S为为 取取n个小矩形面积的和作为曲边梯个小矩形面积的和作为曲边梯形面积形面积S的近似值:的近似值:xiy=f(x)x yObaxi+1xixD1lim()niniSfxx=D1()niiSfxx=D (1)分割分割:在区间在区间0,1上等间隔地插入上等间隔地插入n-1个点个点,将它等分成将它等分成n个小区间个小区间: 每个小区间宽度每个小区间宽度xban-= 11211,iina xx xxxxb-
6、(一)、定积分的定义(一)、定积分的定义 11()()nniiiibafxfnxx=-D =小矩形面积和S=如果当如果当n时,时,S 的无限接近某个常数,的无限接近某个常数,这个常数为函数这个常数为函数f(x)在区间在区间a, b上的定积分,记作上的定积分,记作 baf (x)dx =f (x i)Dxi。 从求曲边梯形面积从求曲边梯形面积S的过程中可以看出的过程中可以看出,通过通过“四步曲四步曲”:分割分割-近似代替近似代替-求和求和-取极限得到解决取极限得到解决.1( )lim()ninibaf x dxfnx=-=ba即定积分的定义:定积分的相关名称:定积分的相关名称: 叫做积分号,叫做
7、积分号, f(x) 叫做被积函数,叫做被积函数, f(x)dx 叫做被积表达式,叫做被积表达式, x 叫做积分变量,叫做积分变量, a 叫做积分下限,叫做积分下限, b 叫做积分上限,叫做积分上限, a, b 叫做积分区间。叫做积分区间。1( )lim()ninibaf x dxfnx=-=ba即Oabxy)(xfy =被积函被积函数数被积表达式被积表达式积分变量积分变量积分下限积分下限积分上限积分上限baf(x)dx =f (t)dt =f(u)du。 说明:说明: (1) 定积分是一个数值定积分是一个数值, 它只与被积函数及积分区间有关,它只与被积函数及积分区间有关, 而与积分变量的记法无
8、关,即而与积分变量的记法无关,即(2)定定义义中中区区间间的的分分法法和和x xi的的取取法法是是任任意意的的. b ba af f( (x x) )dxdx = = b ba af f ( (x x) )dxdx - -(3)(3)(二二)、定积分的几何意义、定积分的几何意义:Ox yab y=f (x)baf (x)dx =f (x)dxf (x)dx。 x=a、x=b与 x轴所围成的曲边梯形的面积。 当 f(x)0 时,积分dxxfba)(在几何上表示由 y=f (x)、 特别地,当 a=b 时,有baf (x)dx=0。 当当f(x) 0时,由时,由y= =f (x)、x= =a、x=
9、 =b 与与 x 轴所围成的曲轴所围成的曲边梯形位于边梯形位于 x 轴的下方,轴的下方,x yOdxxfSba)(-=-,dxxfba)(ab y=f (x) y=-f (x)dxxfSba)(-=baf (x)dx =f (x)dxf (x)dx。 =-S上述曲边梯形面积的负值。上述曲边梯形面积的负值。 定积分的几何意义:定积分的几何意义:积分 b ba af f ( (x x) )d dx x 在在几几何何上上表表示示 b ba af f ( (x x) )d dx x = =f f ( (x x) )d dx x f f ( (x x) )d dx x。 =-=-S Sab y=f (x
10、)Ox y( )yg x=探究探究:根据定积分的几何意义根据定积分的几何意义,如何用定积分表示图中阴影部分的如何用定积分表示图中阴影部分的面积面积?ab y=f (x)Ox y1()baSfx d x=( )yg x=12( )( )bbaaS SSf xdxg xdx=-=-2( )baSg x dx=(三)(三)、定积分的基本性质、定积分的基本性质 性质性质1. 1. dx)x(g)x(fba = =babadx)x(gdx)x(f性质性质2. 2. badx)x(kf = =badx)x(fk三三: : 定积分的基本性质定积分的基本性质 定积分关于积分区间具有定积分关于积分区间具有可加性
11、可加性 = =bccabadx)x(fdx)x(fdx)x(f 性质性质3. 3. = =2121 ccbccabadx)x(fdx)x(fdx)x(fdx)x(f思考:思考:从定积分的几何从定积分的几何意义解释性质意义解释性质ab y=f(x)baf (x)dx =f (x)dxf (x)dx。 f (x)dx =f (x)dxf (x)dx。 f (x)dx =f (x)dxf (x)dx。 cOx y练习:利用定积分计算:练习:利用定积分计算:dx230 x 例例2 2:计算定积分:计算定积分 dx120(2x - x ) 练习:用定积分表示抛物线练习:用定积分表示抛物线 y=x2-2x+3 与直线与直线 y=x+3所围所围成的图形面积成的图形面积 dxdx33200 x + 3 x - x + 3 - -dx=320-x + 3x (四)、小结(四)、小结定积分的实质:特殊和式的逼近值定积分的实质:特殊和式的逼近值定积分的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 小波变换在时频分析中的应用-洞察分析
- 胃扭转诊断新技术-洞察分析
- 异构计算优化-洞察分析
- 【章末复习+测试】第2章 有理数的运算全章复习与测试(解析版)
- 荧光光谱技术-洞察分析
- 《家装营销教程参考》课件
- 《油漆涂料工程》课件
- 油气泄漏防控技术-洞察分析
- 参观太和殿导游词(8篇)
- 《玉米的生物学基础》课件
- 2024年生产主管的挑战与机遇
- 20以内进位加法100题(精心整理6套-可打印A4)
- 扬州育才小学2023-2024一年级上册数学期末复习卷(一)及答案
- 澳大利亚英文版介绍
- 04某污水处理厂630kW柔性支架光伏发电项目建议书
- 山中初唐王勃1
- 化妆品功效评价
- 【幼儿园园本教研】幼儿表征的教师一对一倾听策略
- 家长会课件:高三第一学期家长会优质课件
- 山东省各地市地图课件
- 四班三倒排班表
评论
0/150
提交评论