电路知识学习资料之电路定理_第1页
电路知识学习资料之电路定理_第2页
电路知识学习资料之电路定理_第3页
电路知识学习资料之电路定理_第4页
电路知识学习资料之电路定理_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、第四章 电路定理一、教学基本要求1、了解叠加定理的概念,适用条件,熟练应用叠加定理分析电路。 2、掌握戴维宁定理和诺顿定理的概念和应用条件,并能应用定理分析求解具体电路。二、教学重点与难点1. 教学重点:叠加定理、戴维宁定理和诺顿定理。2教学难点:各电路定理应用的条件、电路定理应用中受控源的处理。三、本章与其它章节的联系: 电路定理是电路理论的重要组成部分,本章介绍的叠加定理、戴维宁定理和诺顿定理适用于所有线性电路问题的分析,对于进一步学习后续课程起着重要作用,为求解电路提供了另一类分析方法。 四、教学内容§4.1 叠加定理 1.叠加定理的内容 叠加定理表述为:在线性电路中,任一支路

2、的电流(或电压)都可以看成是电路中每一个独立电源单独作用于电路时,在该支路产生的电流(或电压)的代数和。2.定理的证明图 4.1图4.1所示电路应用结点法: 解得结点电位: 支路电流为: 以上各式表明:结点电压和各支路电流均为各独立电源的一次函数,均可看成各独立电源单独作用时,产生的响应之叠加,即表示为: 式中a1,a2,a3 ,b1,b2,b3和c1,c2,c3 是与电路结构和电路参数有关的系数。3.应用叠加定理要注意的问题 1) 叠加定理只适用于线性电路。这是因为线性电路中的电压和电流都与激励(独立源)呈一次函数关系。 2) 当一个独立电源单独作用时,其余独立电源都等于

3、零(理想电压源短路,理想电流源开路)。如图4.2所示。 =三个电源共同作用is1单独作用+us2单独作用us3单独作用图 4.23) 功率不能用叠加定理计算(因为功率为电压和电流的乘积,不是独立电源的一次函数)。4) 应用叠加定理求电压和电流是代数量的叠加,要特别注意各代数量的符号。即注意在各电源单独作用时计算的电压、电流参考方向是否一致,一致时相加,反之相减。5) 含受控源(线性)的电路,在使用叠加定理时,受控源不要单独作用,而应把受控源作为一般元件始终保留在电路中,这是因为受控电压源的电压和受控电流源的电流受电路的结构和各元件的参数所约束。6) 叠加

4、的方式是任意的,可以一次使一个独立源单独作用,也可以一次使几个独立源同时作用,方式的选择取决于分析问题的方便。4.叠加定理的应用例41 求图示电路的电压 U. 例41图解:应用叠加定理求解。首先 画出分电路图如下图所示 当12V电压源作用时,应用分压原理有:当3A电流源作用时,应用分流公式得: 则所求电压:例42 计算 图示电路的电压 u 。 例42图解:应用叠加定理求解。首先 画出分电路图如下图所示 当 3A 电流源作用时: 其余电源作用时: 则所求电压: 本例说明: 叠加方式是任意的,可以一次一个独立源单独作用,也可以一次几个独立源同时作用,取决于使分析计算简便。例43 计算图示电路的电压

5、 u 电流 i 。 例43 图解:应用叠加定理求解。首先 画出分电路图如下图所示 当 10V 电源作用时: 解得: 当5A电源作用时,由左边回路的KVL: 解得: 所以:注意:受控源始终保留在分电路中。例44封装好的电路如图,已知下列实验数据:当时,响应 ,当时,响应, 求:时, i = ? 例44图解:根据叠加定理,有: 代入实验数据,得: 解得: 因此: 本例给出了研究激励和响应关系的实验方法5. 齐性原理由以上叠加定理可以得到齐性原理。齐性原理表述为:线性电路中,所有激励(独立源)都增大(或减小)同样的倍数,则电路中响应(电压或电流)也增大(或减小)同样的倍数。当激励只有一个时,则响应与

6、激励成正比。例45求图示电路的电流i,已知:RL=2 R1=1 R2=1 uS =51V 例45图解:采用倒推法:设i' =1A 。则各支路电流如下图所示, 此时电源电压为: , 根据齐性原理:当电源电压为: 时,满足关系:§4.2戴维宁定理和诺顿定理1.戴维宁定理的内容戴维宁定理表述为:任何一个线性含源一端口网络,对外电路来说,总可以用一个电压源和电阻的串联组合来等效替代;此电压源的电压等于外电路断开时一端口网络端口处的开路电压uoc ,而电阻等于一端口的输入电阻(或等效电阻Req)。以上表述可以用图4.7来表示。图 4.7 戴维宁定理2.定理的证明这里给出戴维宁定理的一般

7、证明。图4.8(a)为线性有源一端口网络A与负载网络N相连,设负载上电流为i,电压为u。根据替代定理将负载用理想电流源i 替代,如图4.8(b)所示。 图 4.8替代后不影响A中各处的电压和电流。由叠加定理u可以分为两部分,如图4.9所示,即: 其中是A内所有独立源共同作用时在端口产生的开路电压,是仅由电流源i作用在端口产生的电压,即:, 图 4.9因此 上式表示的电路模型如图4.10所示。这就证明了戴维宁定理是正确的。 图 4.103.应用戴维宁定理要注意的问题1)含源一端口网络所接的外电路可以是任意的线性或非线性电路,外电路发生改变时,含源一端口网络的等效电路不变。2)当含源一端口网络内部

8、含有受控源时,控制电路与受控源必须包含在被化简的同一部分电路中。3)开路电压uoc的计算戴维宁等效电路中电压源电压等于将外电路断开时的开路电压uoc,电压源方向与所求开路电压方向有关。计算uoc的方法视电路形式选择前面学过的任意方法,使易于计算。4)等效电阻的计算等效电阻为将一端口网络内部独立电源全部置零(电压源短路,电流源开路)后,所得无源一端口网络的输入电阻。常用下列三种方法计算:5)当网络内部不含有受控源时可采用电阻串并联和 Y 互换的方法计算等效电阻;6)外加电源法(加电压求电流或加电流求电压)。 如图 4.11 所示。图 4.11 用外加电源法求戴维宁等效电阻则7)开路电压,短路电流

9、法。即求得网络A端口间的开路电压后,将端口短路求得短路电流,如图4.12所示。则: 以上方法中后两种方法更具有一般性。4.戴维宁定理的应用例410 计算图示电路中Rx分别为1.2、5.2时的电流 I ; 例410 图(a)解:断开Rx支路,如图(b)所示,将其余一端口网络化为戴维宁等效电路: 例410 图(b)例410 图(c)1)求开路电压 Uoc 2)求等效电阻Req。把电压源短路,电路为纯电阻电路,应用电阻串、并联公式,得: 3)画出等效电路,接上待求支路如图(d)所示, 例410 图(d)当 Rx=1.2时, 当 Rx =5.2时, 例411计算图示电路中的电压U0 ; 例411 图(

10、a)解:应用戴维宁定理。断开3电阻支路,如图(b)所示,将其余一端口网络化为戴维宁等效电路:1)求开路电压 Uoc 2)求等效电阻 Req 方法1:外加电压源如图(c)所示,求端口电压U 和电流I0的比值。注意此时电路中的独立电源要置零。因为: 所以 方法2:求开路电压和短路电流的比值。把电路断口短路如图(d)所示。注意此时电路中的独立电源要保留。对图(d)电路右边的网孔应用KVL,有: 所以I =0 , 则 3) 画出等效电路,如图(e)所示,解得: 例411 图(b) 例411 图(c)例411 图(d) 例411 图(e) 注意:计算含受控源电路的等效电阻是用外加电源法还是开路、短路法,

11、要具体问题具体分析,以计算简便为好。例412 求图示电路中负载 RL 消耗的功率。 例412 图(a)解:应用戴维宁定理。断开电阻RL所在支路,如图(b)所示,将其余一端口网络化为戴维宁等效电路。首先应用电源等效变换将图(b)变为图(c)。 例412 图(b)例412 图(c)1) 求开路电压Uoc 由 KVL 得: 解得: , 2) 求等效电阻Req,用开路电压、短路电流法。端口短路,电路如图(d)所示,短路电流为: 因此:例412 图(d)3) 画出戴维宁等效电路,接上待求支路如图(e)所示,则: 例412 图(e)例413电路如图所示,已知开关S扳向1,电流表读数为2A;开关S

12、扳向2,电压表读数为4V;求开关S扳向3后,电压U 等于多少? 例413 图(a)解:根据戴维宁定理,由已知条件得 所以 等效电路如图(b)所示, 例413 图(b)则:5.诺顿定理的内容诺顿定理表述为:任何一个含源线性一端口电路,对外电路来说,可以用一个电流源和电导 (电阻)的并联组合来等效置换;电流源的电流等于该一端口的短路电流,而电导(电阻)等于把该一端口的全部独立电源置零后的输入电导(电阻)。以上表述可以用图4.13来表示。 图 4.13 诺顿定理诺顿等效电路可由戴维宁等效电路经电源等效变换得到。诺顿等效电路可采用与戴维宁定理类似的方法证明。需要注意的是:(1)当含源一端口网络A的等效

13、电阻时,该网络只有戴维宁等效电路,而无诺顿等效电路。(2)当含源一端口网络A的等效电阻时,该网络只有诺顿等效电路而无戴维宁等效电路。 6. 诺顿定理的应用例414 应用诺顿定理求图示电路中的电流 I 。 例414 图(a)解: (1) 求短路电流ISC,把ab端短路,电路如图(b)所示,解得: 所以: 例414 图(b) (2) 求等效电阻Req ,把独立电源置零,电路如图(c)所示。解得: (3) 画出诺顿等效电路,接上待求支路如图(d)所示,应用分流公式得: 注意:诺顿等效电路中电流源的方向。 例414 图(c)例414 图(d)例415求图示电路中的电压 U 。 例415 图(

14、a)解:本题用诺顿定理求比较方便。因a、b处的短路电流比开路电压容易求。 例415 图(b)例415 图(c) (1)求短路电流ISC,把ab端短路,电路如图(b)所示,解得: (2)  求等效电阻Req,把独立电源置零,电路如图(c)所示,为简单并联电路。 (3) 画出诺顿等效电路, 接上待求支路如图(d)所示,得: 例415 图(d)§4.3 最大功率传输定理1最大功率传输定理一个含源线性一端口电路,当所接负载不同时,一端口电路传输给负载的功率就不同,讨论负载为何值时能从电路获取最大功率,及最大功率的值是多少的问题就是最大功率传输定理所要表述的。将含源一端口电

15、路等效成戴维宁电源模型,如图4.14所示。 图 4.14 等效电压源接负载电路由图可知电源传给负载 RL 的功率为: 功率P随负载 RL 变化的曲线如图4.15所示,存在一极大值点。为了找这一极大值点,对P 求导,且令导数为零,即:解上式得:图 4.15结论:有源线性一端口电路传输给负载的最大功率条件是:负载电阻RL等于一端口电路的等效内阻。称这一条件为最大功率匹配条件。将这一条件代入功率表达式中,得负载获取的最大功率为: 需要注意的是:1)最大功率传输定理用于一端口电路给定,负载电阻可调的情况:2)一端口等效电阻消耗的功率一般并不等于端口内部消耗的功率,因此当负载获取最大功率时,电路的传输效率并不一定是50%;3) 计算最大功率问题结合应用戴

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论