版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、§14.3坐标系与参数方程1极坐标系(1)极坐标系的建立:在平面上取一个定点O,叫做极点,从O点引一条射线Ox,叫做极轴,再选定一个长度单位、一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就确定了一个极坐标系设M是平面内一点,极点O与点M的距离OM叫做点M的极径,记为,以极轴Ox为始边,射线OM为终边的角叫做点M的极角,记为.有序数对(,)叫做点M的极坐标,记作M(,)(2)极坐标与直角坐标的关系:把直角坐标系的原点作为极点,x轴的正半轴作为极轴,并在两种坐标系中取相同的长度单位,设M是平面内任意一点,它的直角坐标是(x,y),极坐标为(,),则它们之间的关系为xco
2、s_,ysin_.另一种关系为2x2y2,tan .2简单曲线的极坐标方程(1)直线的极坐标方程 (R)表示过极点且与极轴成角的直线;cos a表示过(a,0)且垂直于极轴的直线;sin b表示过且平行于极轴的直线;sin()1sin(1)表示过(1,1)且与极轴成角的直线方程(2)圆的极坐标方程2rcos 表示圆心在(r,0),半径为|r|的圆;2rsin 表示圆心在,半径为|r|的圆;r表示圆心在极点,半径为|r|的圆3曲线的参数方程在平面直角坐标系xOy中,如果曲线上任意一点的坐标x,y都是某个变量t的函数并且对于t的每一个允许值上式所确定的点M(x,y)都在这条曲线上,则称上式为该曲线
3、的参数方程,其中变量t称为参数4一些常见曲线的参数方程(1)过点P0(x0,y0),且倾斜角为的直线的参数方程为(t为参数)(2)圆的方程(xa)2(yb)2r2的参数方程为(为参数)(3)椭圆方程1(a>b>0)的参数方程为(为参数)(4)抛物线方程y22px(p>0)的参数方程为(t为参数)1在极坐标系中,直线sin()2被圆4截得的弦长为_答案42已知点P(3,m)在以点F为焦点的抛物线(t为参数)上,则PF_.答案43直线(t为参数)的倾斜角为_答案50°4(2014·天津)在以O为极点的极坐标系中,圆4sin 和直线sin a相交于A,B两点若A
4、OB是等边三角形,则a的值为_答案3解析由4sin 可得x2y24y,即x2(y2)24.由sin a可得ya.设圆的圆心为O,ya与x2(y2)24的两交点A,B与O构成等边三角形,如图所示由对称性知OOB30°,ODa.在RtDOB中,易求DBa,B点的坐标为(a,a)又B在x2y24y0上,(a)2a24a0,即a24a0,解得a0(舍去)或a3.题型一极坐标与直角坐标的互化例1在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立极坐标系曲线C的极坐标方程为cos()1,M,N分别为C与x轴、y轴的交点(1)写出C的直角坐标方程,并求M、N的极坐标;(2)设MN的中点为P,求
5、直线OP的极坐标方程解(1)由cos()1得(cos sin )1.从而C的直角坐标方程为xy1,即xy2.当0时,2,所以M(2,0)当时,所以N(,)(2)M点的直角坐标为(2,0)N点的直角坐标为(0,)所以P点的直角坐标为(1,)则P点的极坐标为(,),所以直线OP的极坐标方程为(R)思维升华直角坐标方程化为极坐标方程,只需把公式xcos 及ysin 直接代入并化简即可;而极坐标方程化为直角坐标方程要通过变形,构造形如cos ,sin ,2的形式,进行整体代换其中方程的两边同乘以(或同除以)及方程两边平方是常用的变形方法但对方程进行变形时,方程必须保持同解,因此应注意对变形过程的检验在
6、极坐标系中,已知圆2cos 与直线3cos 4sin a0相切,求实数a的值解将极坐标方程化为直角坐标方程,得圆的方程为x2y22x,即(x1)2y21,直线的方程为3x4ya0.由题设知,圆心(1,0)到直线的距离为1,即有1,解得a8或a2.故a的值为8或2.题型二参数方程与普通方程的互化例2已知两曲线参数方程分别为(0<)和(tR),求它们的交点坐标解将两曲线的参数方程化为普通方程分别为y21 (0y1,<x)和y2x,联立解得交点为.思维升华(1)参数方程化为普通方程常用的消参技巧有代入消元、加减消元、平方后再加减消元等对于与角有关的参数方程,经常用到的公式有sin2cos
7、21,1tan2等(2)在将曲线的参数方程化为普通方程时,还要注意其中的x,y的取值范围,即在消去参数的过程中一定要注意普通方程与参数方程的等价性(2014·重庆)已知直线l的参数方程为(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为sin24cos 0(0,0<2),则直线l与曲线C的公共点的极径_.答案解析参数方程化为普通方程为yx1.由sin24cos 0,得2sin24cos 0,其对应的直角坐标方程为y24x0,即y24x.由可得故直线和抛物线的交点坐标为(1,2),故交点的极径为.题型三极坐标、参数方程的综合应用例3在直角坐标平面
8、内,以坐标原点O为极点,x轴的正半轴为极轴,建立极坐标系曲线C的极坐标方程是4cos ,直线l的参数方程是(t为参数),M,N分别为曲线C、直线l上的动点,求MN的最小值解化极坐标方程4cos 为直角坐标方程x2y24x0,所以曲线C是以(2,0)为圆心,2为半径的圆化参数方程(t为参数)为普通方程xy30.圆心到直线l的距离d,此时,直线与圆相离,所以MN的最小值为2.思维升华涉及参数方程和极坐标方程的综合题,求解的一般方法是分别化为普通方程和直角坐标方程后求解转化后可使问题变得更加直观,它体现了化归思想的具体运用(1)(2014·陕西)在极坐标系中,点(2,)到直线sin()1的
9、距离是_(2)在极坐标系中,点A的坐标为(2,),曲线C的方程为2cos ,则OA(O为极点)所在直线被曲线C所截弦的长度为_答案(1)1(2)解析(1)点(2,)化为直角坐标为(,1),直线sin()1化为(sin cos )1,yx1,即xy10,点(,1)到直线xy10的距离为1.(2)由题意知直线OA的直角坐标方程为xy0,曲线C的直角坐标方程为x2y22x,即(x1)2y21,易知曲线C为圆,且圆心C到直线OA的距离为,故直线OA被曲线C所截弦的长度为2.参数的几何意义不明致误典例:(10分)已知直线l的参数方程为(t为参数),若以直角坐标系xOy的O点为极点,Ox方向为极轴,选择相
10、同的长度单位建立极坐标系,得曲线C的极坐标方程为2cos()(1)求直线l的倾斜角;(2)若直线l与曲线C交于A,B两点,求AB.易错分析不明确直线的参数方程中的几何意义导致错误规范解答解(1)直线的参数方程可以化为2分根据直线参数方程的意义,直线l经过点(0,),倾斜角为60°.4分(2)直线l的直角坐标方程为yx,6分2cos()的直角坐标方程为(x)2(y)21,8分所以圆心(,)到直线l的距离d.所以AB.10分温馨提醒对于直线的参数方程(t为参数)来说,要注意t是参数,而则是直线的倾斜角与此类似,椭圆参数方程的参数有特别的几何意义,它表示离心角.方法与技巧1曲线的极坐标方程
11、与直角坐标系的互化思路:对于简单的我们可以直接代入公式cos x,sin y,2x2y2,但有时需要作适当的变化,如将式子的两边同时平方,两边同时乘以等2参数方程化普通方程常用的消参技巧:代入消元、加减消元、平方后加减消元等,经常用到公式:cos2sin21,1tan2.3利用曲线的参数方程来求解两曲线间的最值问题非常简捷方便,是我们解决这类问题的好方法失误与防范1极径是一个距离,所以0,但有时可以小于零极角规定逆时针方向为正,极坐标与平面直角坐标不同,极坐标与P点之间不是一一对应的,所以我们又规定0,0<2,来使平面上的点与它的极坐标之间是一一对应的,但仍然不包括极点2在将曲线的参数方
12、程化为普通方程时,还要注意其中的x,y的取值范围,即在消去参数的过程中一定要注意普通方程与参数方程的等价性.A组专项基础训练(时间:50分钟)1(2014·江苏)在平面直角坐标系xOy中,已知直线l的参数方程为(t为参数),直线l与抛物线y24x相交于A,B两点,求线段AB的长解将直线l的参数方程代入抛物线方程y24x,得24,解得t10,t28.所以AB|t1t2|8.2已知曲线C的参数方程为0,2),曲线D的极坐标方程为sin().(1)将曲线C的参数方程化为普通方程;(2)曲线C与曲线D有无公共点?试说明理由解(1)由0,2)得x2y1,x1,1(2)由sin()得曲线D的普通
13、方程为xy20.得x2x30.解得x1,1,故曲线C与曲线D无公共点3(2013·福建)在平面直角坐标系中,以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系,已知点A的极坐标为(,),直线l的极坐标方程为cos()a,且点A在直线l上(1)求a的值及直线l的直角坐标方程;(2)圆C的参数方程为(为参数),试判断直线l与圆C的位置关系解(1)由点A(,)在直线cos()a上,可得a.所以直线l的方程可化为cos sin 2,从而直线l的直角坐标方程为xy20.(2)由已知得圆C的直角坐标方程为(x1)2y21,所以圆C的圆心为(1,0),半径r1,因为圆心C到直线l的距离d<1
14、,所以直线l与圆C相交4在极坐标系中,P是曲线12sin 上的动点,Q是曲线12cos上的动点,试求PQ的最大值解12sin ,212sin ,x2y212y0,即x2(y6)236.又12cos,212,x2y26x6y0,(x3)2(y3)236,PQmax6618.5在极坐标系中,已知三点M、N(2,0)、P.(1)将M、N、P三点的极坐标化为直角坐标;(2)判断M、N、P三点是否在一条直线上解(1)由公式得M的直角坐标为(1,);N的直角坐标为(2,0);P的直角坐标为(3,)(2)kMN,kNP.kMNkNP,M、N、P三点在一条直线上6在同一平面直角坐标系中,经过伸缩变换后,曲线C
15、:x2y236变为何种曲线,并求曲线的焦点坐标解圆x2y236上任一点为P(x,y),伸缩变换后对应的点的坐标为P(x,y),则4x29y236,即1.曲线C在伸缩变换后得椭圆1,其焦点坐标为(±,0)B组专项能力提升(时间:30分钟)1(2014·福建)已知直线l的参数方程为(t为参数),圆C的参数方程为(为参数)(1)求直线l和圆C的普通方程;(2)若直线l与圆C有公共点,求实数a的取值范围解(1)直线l的普通方程为2xy2a0,圆C的普通方程为x2y216.(2)因为直线l与圆C有公共点,故圆C的圆心到直线l的距离d4,解得2a2.2已知圆O1和圆O2的极坐标方程分别
16、为2,22cos()2.(1)把圆O1和圆O2的极坐标方程化为直角坐标方程;(2)求经过两圆交点的直线的极坐标方程解(1)由2知24,所以x2y24;因为22cos()2,所以22(cos cos sin sin )2,所以x2y22x2y20.(2)将两圆的直角坐标方程相减,得经过两圆交点的直线方程为xy1.化为极坐标方程为cos sin 1,即sin().3(2013·课标全国)已知曲线C1的参数方程为(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为2sin .(1)把C1的参数方程化为极坐标方程;(2)求C1与C2交点的极坐标(0,0<2)解(1)C1的参数方程为.(x4)2(y5)225(cos2tsin2t)25,即C1的直角坐标方程为(x4)2(y5)225,把xcos ,ysin 代入(x4)2(y5)225,化简得:28cos 10sin 160.(2)C2的直角坐标方程为x2y22y,解方程组得或.C1与C2交点的直角坐标为(1,1),(0,2)C1与C2交点的极坐标为,.4在直角坐标系xOy中,以
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度绿色建筑材料产销合作框架协议书3篇
- 专项旧房翻新改造授权合同2024版一
- 专项消防工程:2024年中央空调安全系统协议版B版
- 2025年度时尚秀场场地租赁拍摄合同4篇
- 2025年度产业园企业入驻绿色生产技术转移合作协议4篇
- 2025年度工业0智能厂房租赁合作协议2篇
- 2025年度汽车零部件全球采购合同4篇
- 2025年度虚拟现实设备检测服务合同范本4篇
- 二零二五年度综合医院设备采购协议-64排螺旋CT设备3篇
- 2024年药品供应链管理合作协议6篇
- 医院项目竣工验收和工程收尾阶段的管理措施专项方案
- 2024年涉密人员考试试题库保密基本知识试题附答案(考试直接用)
- 2024年桂林中考物理试卷
- DL∕T 5362-2018 水工沥青混凝土试验规程
- (正式版)JC∕T 60023-2024 石膏条板应用技术规程
- DL-T5054-2016火力发电厂汽水管道设计规范
- (权变)领导行为理论
- 2024届上海市浦东新区高三二模英语卷
- 家用电器可靠性与寿命预测研究
- 中考语文二轮复习:诗歌鉴赏系列之边塞军旅诗(知识点+方法+习题)
- 2024年智慧工地相关知识考试试题及答案
评论
0/150
提交评论