版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、知识考点:中考复习专题圆的切线的判定及性质2011年11月17日-14-/341、掌握切线的判定及其性质的综合运用,在涉及切线问题时,常连结过切点 的半径,切线的判定常用以下两种方法:一是连半径证垂直,二是作垂线证半径。2、掌握切线长定理的灵活运用,掌握三角形和多边形的内切圆,三角形的内 心。精典例题:一、若直线1过。上某一点A,证明1是。的切线,只需连0A,证明0AL1 就行了,简称“连半径,证垂直”,难点在于如何证明两线垂直.例1如图,在aABC中,AB=AC,以AB为直径的。交BC于D,交AC于E, B为切点的切线交0D延长线于F.求证:EF及。0相切.例2如图,AD是NBAC的平分线,
2、P为BC延长线上一点,且PA=PD.求证:PA及。0相切.例3如图,AB=AC, AB是。0的直径,。交BC于D, DM_LAC于M求证:DM及。0相切.例4如图,已知:AB是。的直径,点C在。上,且NCAB=30°, BD=OB, D 在AB的延长线上.求证:DC是。0的切线例5如图,AB是。0的直径,CD±AB,且OAOD OP.求证:PC是。的切线.例6如图,ABCD是正方形,G是BC延长线上一点,AG交BD于E,交CD于F.求证:CE及4CFG的外接圆相切.二、若直线1及。0没有已知的公共点,又要证明1是的切线,只需作0A ±1,A为垂足,证明0A是。的半
3、径就行了,简称:“作垂直飞例7如图,AB=AC, D为BC中点,0D及AB切于E点.求证:AC及。D相切.例8 已知:如图,AC, BD及。0切于A、B,且ACBD,若NCOD=90°.求证:CD是。的切线.习题练习 例1如图,AB是。的弦(非直径),C、D是AB上两点,并且0C=0D,求证:AC=BD.例2已知:如图,在ABC中,AB=AC,以AB为直径的。及BC交于点D,及AC交于点E,求证:为等腰三角形.例3如图,AB是。0的直径,弦AC及AB成30°角,CD及。切于C,交AB的延长线于D,求证:AC=CD.例4如图20-12, BC为。的直径,AD1BC,垂足为D,
4、 AB = AF 9 BF和AD交于E,求证:AE=BE.F例5如图,AB是。的直径,以0A为直径的。01及。0二的弦相交于D, DE10C,垂足为E.(1)求证:AD=DC. (2)求证:DE是。(X的切线.例6如图,已知直线MN及以AB为直径的半圆相切于点C, ZA=280 .(1)求NACM的度数.(2)在MN上是否存在一点D,使ABCD=AC BC,说明理由.例 7 如图,在 RtZXABC 中,ZC=90° , AC=5, BC=12,。0 的半径为 3.(1)若圆心。及C重合时,。及AB有怎样的位置关系?(2)若点。沿CA移动,当0C等于多少时,。及AB相切?B19.如图
5、,RtZXABC内接于。0, AC=BC, NBAC的平分线AD及。0交于点D,及BCAE=BF; (3)交于点E,延长BD,及AC的延长线交于点F,连结CD, G是CD的中点,连结0G.(1)若OG DE = 3(2-向,求。的面积。判断0G及CD的位置关系,写出你的结论并证明;(2)求证:12、如图,割线ABC及30相交于B、C两点,D为00上一点,E为求?的中点,0E 交 BC 于 F, DE 交 AC 于 G, NADG=NAGD。(1)求证:AD是。的切线;(2)如果 AB = 2, AD = 4, EG = 2,求。0 的半径。13、如图,在ABC中,ZABC = 90°
6、,。是AB上一点,以。为圆心,0B为半径的圆及AB交于点E,及AC切于点D, AD = 2, AE=1,求又班”1 (2007中考)如图,等腰三角形月6。中,AC=BC=1O, AB= 12.以6。为直径作。0交AB于点交月。于点G, DFVAC,垂足为尸,交的延长线于点及求证:直线4是。的切线;求的值。A2 (2008中考)如图,AB是。的直径,AC是弦,NBAC的平分线AD交。0于点D,DE±AC,交AC的延长线于点E, 0E交AD于点F.求证:DE是。的切线;若, 惊的值。3 (2009中考)如图,RtZXABC中,ZABC = 90°,以A3为直径作交AC边于点D,
7、石是边8C的中点,连接OE.(1)求证:直线。石是。的切线;(2)连接OC交OE于点/,若OE =4.如图,点0在NAPB的平分线上,。及PA相切于点C.(1)求证:直线PB及。0相切;(2) P0的延长线及。0交于点E.若。的半径为3, PC=4.求弦CE的长.已知:如图,在RtZXABC中,NC = 90。,点。在A3上,以。为圆心,长为半径的圆及AC A8分别交于点D E, S.ZCBD = ZA.(1)判断直线30及O。的位置关系,并证明你的结论;k(2)若 A£>:AO = 8:5, BC = 2,求 8。的长. 解:(1)27.(本题满分10分)如图18,四边形A8
8、C。内接于8。是。的直径,4ELC。,垂足为E, DA平分NBDE .(1)求证:AE是。的切线;(2)若 NDBC = 30 , DE = 1cm ,求 8。的长.图18以45为直径的。交AC于点上,如图所示,人钻。是直角三角形,ZABC = 90 ,点。是3C边的中点,连结OE.(1)求证:OE及。相切;(2)若。的半径为6,DE = 3,求AE.24、(本题满分10分)如图,AB是。0的直径,ZBAC=30° , M是0A上一点,过M作AB的垂线交AC于点 N,交BC的延长线于点E,直线CF交EN于点F,且NECF=NE.(1)证明CF是30的切线;(2)设。的半径为1,且AC
9、=CE,求M0的长.-15-/34例2图例1图【例1】如图,AC为。的直径,B是。0外一点,AB交。于E点,过E点作 。的切线,交BC于D点,DE=DC,作EF_LAC于F点,交AD于M点。(1)求证:BC是00的切线;(2) EM=FMo 证明:【例2】如图,ABC中,AB=AC, 0是BC的中点,以0为圆心的圆及AB相切于点D。求证:AC是。的切线。【例3】如图,己知AB是。的直径,BC为。的切线,切点为B, 0C平行于 弦 AD, 0A=ro(1)求证:CD是。0的切线;(2)求4ZZOC的值;(3)若 AD+OC='r,求 CD 的长。2探索及创新:【问题一】如图,以正方形AB
10、CD的边AB为直径,在正方形内部 作半圆,圆心为0, CG切半圆于E,交AD于F,GA=8 o(1)求NG的余弦值;(2)求AE的长。【问题二】如图,已知ABC中,AC=BC, ZCAB=a (定值),。的圆心。在-29-/34AB上,并分别及AC、BC相切于点P、Qo(1)求 NPOQ;问题二图(2)设D是CA延长线上的一个动点,DE及相切 于点M,点E在CB的延长线上,试判断ND0E的大小是否 保持不变,并说明理由。圆的切线证明及线段长求解在在中考中的常见题型1、已知:如图,在矩形A8C。中,点。在对角线8。上,以。的长为半径的3。及AO, 8。分别交于点A点尸,且NA8七二N。8c.(1
11、)判断直线8E及。的位置关系,并证明你的第论;.一、0(2)若,CD = 2,求。O的半径.I A2、已知:如图,。的半径3垂直弦46于点乂连接6G过点力作弦过点。作物交国延长线于点,延长。交熊于点尸.(1)求证:为。的切线;(2)若 BC=5, AB=S,求行'的长./(3、如图,M8C是等腰三角形,AB=ACf以AC为 直径的。及8c交于点O, DE工AB,垂足为E,E。的延长线及AC的延长线交于点尸.(1)求证:。石是。的切线;第3题图(2)若。的半径为2, BE=1,求cosA的值.4、己知:如图,A3是0O的直径,8c切0。于 交。于尸,。为8c边的中点,连结。P.(1)。尸
12、是0。的切线; (2)若,。的半径为5,求。尸的长.5、如图,在ABC中,AB = AC9 AE是角平分线,BM c平分乙48c交AE于点",经过8, M两点的。交8c于点G,交A8于点尸,所恰为。的直径./二(1)求证:AE及。相切;-(2)当时,求。的半径.6、如图,AB是0。的直径,C = 30。,M是0A上一点,过M作AB的垂线交AC 于点N,交BC的延长线于点E,直线CF交EN于点F,且ZEb = NE.(1)证明CF是0。的切线E(2)设。0的半径为1.且AC=CE,求M0的长. K7、如图,已知也为。的直径,力切。于点a过点作。艮L期垂足为£龙交月。于点
13、63;求证:。尸。是等腰三角形.8、在以ZXAFD中,N后90° ,点6、。分别在办FD上,以切9直径的半圆。过点C,联结月。,将月尸。沿40®折得AEC,且点E恰好落在直径AB上.(1)判断:直线尸。及半圆加勺位置关系是:并证明你的结论.(2)若畛阱2,求谢长.9、己知:如图,在aABC中,AB=AC,以AB为直径的。0分别交BC、AC于点D、E, 联结EB交0D于点F.(1)求证:0D±BE;(9题图)(2)若DE二番,AB=5,求AE的长.10、如图所示,也是。的直径,O,_L弦6。于点尸,且交。于点区 若/AE3/(1)判断直线加和。的位置关系,并给出证明
14、;当月店10,於8时,求劭的长.11、已知:也是的弦,a?_L月6于必交。于点,也交4?的延长线于C.(1)求证:AD= DC;,<(2)过作。的切线交6。于区若龙=2, 6£口,f pX求。的半径._山BEC12、如图,A8为。的直径,AO平分NA4C交。于点。, 。石,ACAC的延长线于点E, BF_LAB交AD的延长线于点F,(1)求证:。七是。的切线;(2)若OE = 3,。的半径为5,求3E的长.13、如图,等腰三角形域中,AC=BC=6, AB=S.以用为直径作。交也于点D,交力。于点G, DFLAC,垂足为尸,交绫的延长线于点公(1)求证:直线砥是。的切线;(2)
15、求s力?N£的值.14、如图,为半圆。的直径,点C在半圆。上,过点。作BC的平行线交4。于 点E,交过点A的直线于点。,且"= NB4C(1)求证:AO是半圆。的切线;(2)若 BC = 2, CE = &,求 AO的长.15、已知:如图,在aABC中,AB=BC, D是AC中点,BE平分NABD交AC于点E, 点。是AB上一点,。过B、E两点,交BD于点G,交AB于点F.(1)求证:AC及。相切;(2)当BD=2, sinC=L时,求。的半径.216、如图,AB是。0的直径,点C在。0上,M是位 的中点,0M交。0的 切线BP于点P.(1)判断直线PC和。0的位置
16、关系,并证明你的结论.(2)若 sinNBAC=0.8,。的半径为 2,求线段PC的长.17、如图,在。中,血是直径,月是弦,/ADE = 60° , NC=30° .(1)判断直线必是否为。的切线,并说明理由;(2)若CD = 36 ,求6。的长.18、已知,如图,直线劭V交。于4 6两点,4。是直径, 四平分NBV交。0于。,过。作应1助丫于£(1)求证:应是。的切线;(2)若DE = 6cm, A£=3cm,求。的半径.19、已知:如图,A8为。的直径,弦AC/。,切。于3,联结8.(1)判断8是否为。的切线,若是请证明;若不是请说明理由.(2)若
17、 AC=2,。£> = 6,求。O 的半径.20、如图,。的直径46N, a,为圆周上两点,且四边形仍切是菱形,过点的直线及“力。,交胡、6。的延长线于点艮F.(1)求证:万是0。的切线;(2)求应的长.21、己知:在。0中,AB是直径,AC是弦,于点E,过点C作直线FC,使NFCA=NA0E,彳专万、AB的延长线于点D.AU-oJB(1)求证:FD是。0的切线;一/(2)设0C及BE相交于点G,若0G=2,求。0半径的长;(3)在(2)的条件下,当0E = 3时,求图中阴影部分的面积.22、已知:如图,点A是。上一点,半径OC的延长线及过点A的直线交于点8, OC=BC,.(
18、1)求证:A8是。的切线;(2)若NAC0 = 45。,OC = 2,求弦CO的长.DO第19题AB23、如图,点,是©0直径。的延长线上一点,点6在。上,且49=49=10.(1)求证:劭是。的切线;(2)若点£是劣弧勿上一点,弦4?及6。相交于点E 且6F=9, cosZj5E4=-,求用的长户424、如图,己知也为。的弦,。为。上一点,AOABAD,且劭_L月6于3(1)求证:49是©0的切线;(2)若。的半径为3,止4,求49的长.一、25、已知:如图,月6是。的直径,5是月6延长线上的一点,是。上的一点,(1)判断直线B及。的位置关系,并证明(2)若&q
19、uot;:心5: 3,月后16,求。的直径0 B且助平分/月氏瓦月尸交力尸的延长线于点C.C的长.26、己知:如图,在月6。中,AB=AC,点是边6。的中点.以物为直径作圆。, 交边月6于点尸,联结尸G交助于点日(1)求证:助是圆。的切线;(2)若尸。是圆。的切线,BC=8,求比的长.27、己知:如图,在45。中,ZACB = 90 , N46。的平分线劭交力。于点。,DELDB交AB于点、E,过B、D、E三点作。(1)求证3。是。的切线;(2)设。交6。于点尸,连结跖若吩9,。=12.求生的值.AC28、在Rt胸中,ZC=90°, BO9, (24=12, N/6C的平分线劭交力。
20、于点,,DE2DB交AB于点E,。是£庞的外接圆,交BC于点F(1)求证是。的切线;(2)联结所,求生的值 AC14、如图,AB是半圆(圆心为0)的直径,0D是半径,BY切半圆于B, 0C及弦AD平行且交BM于C。(1)求证:CD是半圆的切线;(2)若AB长为4,点D在半圆上运动,设AD长为工,点A到直线CD的距离为y,试求出了及x之间的函数关系式,并写出臼变量元的取值范围。PC± AB 交。015、如图,AB是。0的直径,点C在。0的半径A0上运动, 于 E, PT 切。0 于 T, PC=2. 5。(1)当CE正好是。0的半径时,PT = 2,求。的半径;(2)设。尸=
21、门AC = X,求出),及X之间的函数关系式;(3) APTC能不能变为以PC为斜边的等腰直角三角形?若能,请求出aPTC 的面积;若不能,请说明理由。(11 年)20.如图,在ZU8C中.AB=/1C,以.48为直径的0。分 别交,IC、8c于点,点F在AC的延长线I- , 0.4 CBF =乙(1)求证:直线4”是的切线:(2)若/1B = 5, siniCBF = g,求和 81的长.(10 年)20.已知:如图,在ZUBC中,。是13边上一点,圆。过。、3、NDOC=2ZACD=90。(1)求证:直统HC是圆。的切线;J(2)如果N4c8=75,圆。的半径为2,求8。的长。“(09 年
22、)20. Bill;如时在IBC中ABM4C/朽是角平分,8M平分NARC变工E于点此经过两点的06交ELF点G,交AB 于点F.通恰为0。的直转.(1)求证:AE与0U相切:(2)当月C=4,cnsC=:时,求0。的半径.(08 年)19 .(本小题满分5分)已珈 如图,在RQABC中,ZC=90".点。在Afi上,以0为惬心,OA K为 半径的圆与八C、八8分别交于点。、£且NCBD=NA.(I)判断T.线RD与0。的位馈关系.并证叨你的结论;(2)若/Z) : .W -S : 5- RC=2.求朋5|川Q(东城一模)20 .已知:45是。的弦,于材交。于点。, _L
23、46交相的延长线于。.(1)求证:AD=DC(2)过作。的切线交6。于其 若庞=2, CE=,(西城一模)21 .如图.是O0的直径以延长线上一点,点8在OO上,且48=初=4。(I)求证述0是。的切线;,(2)若E是劣瓠RC上一点, 与HC相交于点F、的面积为 8.旦= pD ' Jr求AACF的面积.(海淀一模)20 .如图,八月为。的直径,A厌1点C在O。上.CF1OC.且"=".(1)证明8户是©O的切飨;(2)谀AU与酎的延K线交于点M,若WC6,求NMCF的大小.(朝阳一模)21 .已知;如图的半径OC垂直弦由8千点H送检AC,这点A作弦律力H
24、C,过点C作cn/fKA交EA延K期于点D,延长co交必于点£gT(】)求证:CD为。的切找;y7x若睨:=5,,必应求OF的长,/I少(0(丰台一模)20.在此AAPD中,N490° ,点反。分别在4)、尸。上,以皿为直径的半圆。过点C,联结AC,将4尸。沿4点切折得aec,且点E恰好落 在直径AB上.(1)判断:直线尸。及半圆。的位置关系是:并证明你的结论.A O E B-31-/34(2)若姓娇2,求6Z的长.(昌平一模)20.如图所示,出是。的直径,_L弦6。于点尸,且交。于点区若NAE3/ ODB.(1)判断直线切和G)。的位置关系,并给出证明;(2)当月户10,
25、小8时,求劭的长.(房山)20.(本小题满分5分)已知:如图,在aABC中,AB二AC,以AB为直径的。0分别交BC、AC于点D、E,联结EB交0D于点F.(1)求证:0D±BE;(2)若 DE=AB=5,求 AE 的长.(密云) 20.如图,AB是O。的直径,ZBAC = 30°, M是0A上一点,过M作AB的垂线交AC于点N,交BC的延长线于点E,直线CF交EN于点F,且 (1)证明CF是。O的切线(2)设。的半径为1.且AC=CE,求M0的长.(11 年)20.如图,在ZU8C中,AB二HC,以八为直竹的0。分 别交AC.BC于点D、E,点、一在/1C的延长线I- ,
26、 H,( CBF = y4C4/?.(1)求证:直线B一是。的切线;(2)若八8 = 5, win乙C8P = g,求BC和8*的代.(10 年)20.已知:如图,在ZU5C中,。是43边上一点,圆。过。、B、C三点,p ZDOC=2Z4CD=90°o。(1)求证:直线C是圆。的切线;v(2)如果24c8=75。,圆。的半径为2,求的长。“(09 年)20.已如:如图,在A4BC中,A加4QE是中平分线,力,平分 /八班:交于点M经过AM两点的6。交RC F点G,交AB 于点F.F8龄为0。的直径.(1)求证:AE与相切;(2)当BC=4,cmC=g时,求QO的半径.(08 年)19
27、.(本小题满分5分)已珈 如图,在R3ABC中,ZC=9O".点。在Afi上,以0为回心,OAK为 半径的圆与AC、AB分别交于点.0、E,且NIWW/A(I)判断直线白。与O。的位置关系,并证明你的结诒;(2)若3。:AO =S : 5. BC=2,求的 |J勖(1)11模拟(东城一模)20.已知:也是。0的弦,_L4?交4?的延长线于C.Q_L46于朗交。于点D,(1)求证:AD=DC(2)过作。的切线交反?于£,若应=2, CE=,(西城一模)21.如图是O。的直径CA延长线上一点,点B在0。上,且"8 =AD=AO.(I)求证是。的切线;,(2)若K是劣弧
28、BC上一点,A£与RC相交于点F、 HEF的面积为8.旦""力=y,D ' Jr求AACr的面积.(海淀一模)20 .如图,八月为。的直径,人展1启C在0。上,CFLOC,且CF=BE. (1)证明BF是0O的切飨;(2)改AU与.的延K线交于点M,若MC=6,求NMCT的大小.”(一)(朝阳一模)21 .已知;如图©。的半役OC垂直弦"千点H.迂接AC,这点A作弦能力,过点C作 cn/nA交EA延K线于点u,延长co交必于点£xT(1)求证:CD为。的切找i若鼠:二5,仞应求OF的长,/( jKn (丰台一模)20.在APD
29、中,N490° ,点反。分别在4)、尸。上,以皿为直径的半圆。过点C,联结力C,将沿46H折得aec,且点E恰好落 在直径AB上.(1)判断:直线尸。及半圆。的位置关系是:并证明你的结论.月 O E B-41-/34(2)若梦阱2,求的长.(昌平一模)20.如图所示,也是。的直径,_L弦6。于点E且交。于点£,若NAEU/ ODB.(1)判断直线班和。的位置关系,并给出证明; (2)当月历10,小8时,求劭的长.(房山)20.(本小题满分5分)已知:如图,在ABC中,AB=AC, 以AB为直径的。0分别交BC、AC于点D、E,联结EB交0D于点F.(1)求证:0D±BE;(2)若 DE=AB=5,求 AE 的长.(密云)20.如图,AB是O。的直径,ZBAC = 30°, M是0A上一点, 于点N,交BC的延长线于点E,直线CF交EN于点F,且
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 法律法规经济与施工-二级注册建筑师《法律、法规、经济与施工》押题密卷3
- 长春版语文三年级上册教案
- 老年人用药提醒助手
- 海洋生物医药产业布局
- 2024届辽宁省本溪某中学高考化学押题试卷含解析
- 2024高中物理第三章传感器章末质量评估含解析粤教版选修3-2
- 2024高中语文第5单元庄子蚜第2课鹏之徙于南冥训练含解析新人教版选修先秦诸子蚜
- 2024高中语文第五课言之有“理”第3节有话“好好说”-修改蹭训练含解析新人教版选修语言文字应用
- 2024高中语文综合阅读训练2含解析新人教版选修先秦诸子蚜
- 2024高考化学一轮复习第9章化学实验基础第29讲化学实验基础知识和技能精练含解析
- 钢铁生产企业温室气体核算与报告案例
- 农业合作社全套报表(已设公式)-资产负债表-盈余及盈余分配表-成员权益变动表-现金流量表
- 深入浅出Oracle EBS之OAF学习笔记-Oracle EBS技术文档
- 贝利婴幼儿发展量表BSID
- 四年级计算题大全(列竖式计算,可打印)
- 人教部编版八年级历史下册第7课 伟大的历史转折课件(共25张PPT)
- 年会主持词:企业年会主持词
- SB/T 10863-2012家用电冰箱维修服务技术规范
- GB/T 9119-2000平面、突面板式平焊钢制管法兰
- 2020年《小学德育教育校本课程》版
- 偏瘫患者的临床护理及康复评估课件
评论
0/150
提交评论