版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、.2005年高考全国试题分类解析(圆锥曲线)摘要:一,选择题:1重庆卷) 若动点(x,y)在曲线(b>0)上变化,则x2+2y的最大值为(A ) (A) ; (B) ; (C) ; (D) 2b.2. (浙江)函数.关键词:类别:其它来源:牛档搜索(Niudown.COM)本文系牛档搜索(Niudown.COM)根据用户的指令自动搜索的结果,文中内涉及到的资料均来自互联网,用于学习交流经验,作品其著作权归原作者所有。不代表牛档搜索(Niudown.COM)赞成本文的内容或立场,牛档搜索(Niudown.COM)不对其付相应的法律责任!;2005年高考全国试题分类解析(圆锥曲线)一、选择题
2、:1重庆卷) 若动点(x,y)在曲线(b>0)上变化,则x2+2y的最大值为(A ) (A) ;(B) ; (C) ;(D) 2b。2. (浙江)函数yax21的图象与直线yx相切,则a( B )(A) (B) (C) (D)13. (天津卷)设双曲线以椭圆长轴的两个端点为焦点,其准线过椭圆的焦点,则双曲线的渐近线的斜率为( C )ABCD4(天津卷)从集合1,2,3,11中任选两个元素作为椭圆方程中的m和n,则能组成落在矩形区域B=(x,y)| |x|<11且|y|<9内的椭圆个数为(B )A43 B 72 C 86 D 905. (上海)过抛物线的焦点作一条直线与抛物线相
3、交于A、B两点,它们的横坐标之和等于5,则这样的直线( B )A有且仅有一条 B有且仅有两条 C有无穷多条 D不存在6. (山东卷)设直线关于原点对称的直线为,若与椭圆的交点为A、B、,点为椭圆上的动点,则使的面积为的点的个数为( B )(A)1 (B)2 (C)3 (D)47 (全国卷)已知双曲线的一条准线为,则该双曲线的离心率为(A)(A)(B)(C)(D)ABCD8.(全国卷II) 双曲线的渐近线方程是( C)(A) (B) (C) (D) 9. (全国卷II)已知双曲线的焦点为、,点在双曲线上且轴,则到直线的距离为(C )(A) (B) (C) (D) 10. 抛物线上一点的纵坐标为4
4、,则点与抛物线焦点的距离为(D )(A) 2(B) 3(C) 4(D) 511. (全国卷III)设椭圆的两个焦点分别为F1、F2,过F2作椭圆长轴的垂线交椭圆于点P,若F1PF2为等腰直角三角形,则椭圆的离心率是(D)(A) (B) (C) (D)12. (辽宁卷)已知双曲线的中心在原点,离心率为.若它的一条准线与抛物线的准线重合,则该双曲线与抛物线的交点到原点的距离是( B )A2+BCD2113 .(江苏卷)抛物线y=4上的一点M到焦点的距离为1,则点M的纵坐标是( B) ( A ) ( B ) ( C ) ( D ) 014. (江苏卷)(11)点P(-3,1)在椭圆的左准线上.过点P
5、且方向为a=(2,-5)的光线,经直线=-2反射后通过椭圆的左焦点,则这个椭圆的离心率为(A ) ( A ) ( B ) ( C ) ( D ) 15.(湖南卷)已知双曲线1(a0,b0)的右焦点为F,右准线与一条渐近线交于点A,OAF的面积为(O为原点),则两条渐近线的夹角为(D )A30ºB45ºC60ºD90º16. (湖南卷)已知双曲线1(a0,b0)的右焦点为F,右准线与一条渐近线交于点A,OAF的面积为(O为原点),则两条渐近线的夹角为( D)A30ºB45ºC60ºD90º17. (湖北卷)双曲线离心
6、率为2,有一个焦点与抛物线的焦点重合,则mn的值为( A )ABCD18. (福建卷)已知定点A、B且|AB|=4,动点P满足|PA|PB|=3,则|PA|的最小值是( C )ABCD519. (福建卷)设的最小值是( )ABC3D20. (广东卷)若焦点在轴上的椭圆的离心率为,则m=(B)()()()()21. (全国卷III)已知双曲线的焦点为F1、F2,点M在双曲线上且则点M到x轴的距离为(C)(A) (B) (C) (D)22.(福建卷)已知F1、F2是双曲线的两焦点,以线段F1F2为边作正三角形MF1F2,若边MF1的中点在双曲线上,则双曲线的离心率是( D )ABCD二、填空题:1
7、(江西卷)以下四个关于圆锥曲线的命题中:设A、B为两个定点,k为非零常数,则动点P的轨迹为双曲线;过定圆C上一定点A作圆的动点弦AB,O为坐标原点,若则动点P的轨迹为椭圆;方程的两根可分别作为椭圆和双曲线的离心率;双曲线有相同的焦点.其中真命题的序号为 (写出所有真命题的序号) 2. (重庆卷)已知,B是圆F:(F为圆心)上一动点,线段AB的垂直平分线交BF于P,则动点P的轨迹方程为。3. (浙江) 过双曲线(a0,b0)的左焦点且垂直于x轴的直线与双曲线相交于M、N两点,以MN为直径的圆恰好过双曲线的右顶点,则双曲线的离心率等于_2_4. (上海)4直角坐标平面xoy中,若定点A(1,2)与
8、动点P(x,y)满足=4。则点P的轨迹方程是 x+2y-4=0 5. (上海)若椭圆长轴长与短轴长之比为2,它的一个焦点是(2,0),则椭圆的标准方程是6. (上海)若双曲线的渐近线方程为,它的一个焦点是,则双曲线的方程是_。7. (山东卷)设双曲线的右焦点为,右准线与两条渐近线交于P、两点,如果是直角三角形,则双曲线的离心率.三、解答题:OABEFM1. (江西卷)如图,M是抛物线上y2=x上的一点,动弦ME、MF分别交x轴于A、B两点,且MA=MB. (1)若M为定点,证明:直线EF的斜率为定值; (2)若M为动点,且EMF=90°,求EMF的重心G的轨迹解:(1)设M(y,y0
9、),直线ME的斜率为k(l>0)则直线MF的斜率为k,方程为由,消解得(定值)所以直线EF的斜率为定值(2)直线ME的方程为由得同理可得设重心G(x, y),则有消去参数得2(江西卷)OABPF如图,设抛物线的焦点为F,动点P在直线上运动,过P作抛物线C的两条切线PA、PB,且与抛物线C分别相切于A、B两点.(1)求APB的重心G的轨迹方程.(2)证明PFA=PFB.解:(1)设切点A、B坐标分别为,切线AP的方程为: 切线BP的方程为:解得P点的坐标为:所以APB的重心G的坐标为 ,所以,由点P在直线l上运动,从而得到重心G的轨迹方程为: (2)方法1:因为由于P点在抛物线外,则同理有
10、AFP=PFB.方法2:当所以P点坐标为,则P点到直线AF的距离为:即所以P点到直线BF的距离为:所以d1=d2,即得AFP=PFB.当时,直线AF的方程:直线BF的方程:所以P点到直线AF的距离为:同理可得到P点到直线BF的距离,因此由d1=d2,可得到AFP=PFB. 3. (重庆卷) 已知中心在原点的双曲线C的右焦点为(2,0),右顶点为。 (1) 求双曲线C的方程; (2) 若直线l:与双曲线C恒有两个不同的交点A和B,且(其中O为原点),求k的取值范围。解:()设双曲线方程为 由已知得故双曲线C的方程为()将 由直线l与双曲线交于不同的两点得即 设,则而于是 由、得 故k的取值范围为
11、4. (重庆卷) 已知椭圆C1的方程为,双曲线C2的左、右焦点分别为C1的左、右顶点,而C2的左、右顶点分别是C1的左、右焦点。 (1) 求双曲线C2的方程; (2) 若直线l:与椭圆C1及双曲线C2恒有两个不同的交点,且l与C2的两个交点A和B满足(其中O为原点),求k的取值范围。解:()设双曲线C2的方程为,则故C2的方程为(II)将由直线l与椭圆C1恒有两个不同的交点得即 .由直线l与双曲线C2恒有两个不同的交点A,B得 解此不等式得 由、得故k的取值范围为5. (浙江) 17如图,已知椭圆的中心在坐标原点,焦点F1,F2在x轴上,长轴A1A2的长为4,左准线l与x轴的交点为M,|MA1
12、|A1F1|21 ()求椭圆的方程; ()若直线l1:xm(|m|1),P为l1上的动点,使F1PF2最大的点P记为Q,求点Q的坐标(用m表示)OF2F1A2A1PM解:()设椭圆方程为(),半焦距为c, 则,由题意,得 ,解得 故椭圆方程为(II)设P(当时,当时, 只需求的最大值即可。直线的斜率,直线的斜率当且仅当=时,最大,6. (天津卷)抛物线C的方程为,过抛物线C上一点P(x0,y0)(x 00)作斜率为k1,k2的两条直线分别交抛物线C于A(x1,y1)B(x2,y2)两点(P,A,B三点互不相同),且满足.()求抛物线C的焦点坐标和准线方程;()设直线AB上一点M,满足,证明线段
13、PM的中点在y轴上;()当=1时,若点P的坐标为(1,-1),求PAB为钝角时点A的纵坐标的取值范围.解:()由抛物线的方程()得,焦点坐标为,准线方程为()证明:设直线的方程为,直线的方程为点和点的坐标是方程组的解将式代入式得,于是,故又点和点的坐标是方程组的解将式代入式得于是,故由已知得,则设点的坐标为,由,则将式和式代入上式得,即线段的中点在轴上()因为点在抛物线上,所以,抛物线方程为由式知,代入得将代入式得,代入得因此,直线、分别与抛物线的交点、的坐标为,于是,因为钝角且、三点互不相同,故必有求得的取值范围是或又点的纵坐标满足,故当时,;当时,即7. (上海)本题共有3个小题,第1小题
14、满分4分, 第2小题满分6分, 第3小题满分6分. 已知抛物线y2=2px(p>0)的焦点为F,A是抛物线上横坐标为4、且位于x轴上方的点,A到抛物线准线的距离等于5,过A作AB垂直于y轴,垂足为B,OB的中点为M. (1)求抛物线方程; (2)过M作MNFA, 垂足为N,求点N的坐标; (3)以M为圆心,MB为半径作圆M.当K(m,0)是x轴上一动点时,丫讨论直线AK与圆M的位置关系.解(1) 抛物线y2=2px的准线为x=-,于是4+=5, p=2. 抛物线方程为y2=4x. (2)点A是坐标是(4,4), 由题意得B(0,4),M(0,2), 又F(1,0), kFA=;MNFA,
15、 kMN=-, 则FA的方程为y=(x-1),MN的方程为y-2=-x,解方程组得x=,y=, N的坐标(,).(1) 由题意得, ,圆M.的圆心是点(0,2), 半径为2,当m=4时, 直线AK的方程为x=4,此时,直线AK与圆M相离.当m4时, 直线AK的方程为y=(x-m),即为4x-(4-m)y-4m=0,圆心M(0,2)到直线AK的距离d=,令d>2,解得m>1当m>1时, AK与圆M相离; 当m=1时, AK与圆M相切; 当m<1时, AK与圆M相交.8. (上海)点A、B分别是椭圆长轴的左、右端点,点F是椭圆的右焦点,点P在椭圆上,且位于轴上方,。(1)求
16、点P的坐标;(2)设M是椭圆长轴AB上的一点,M到直线AP的距离等于,求椭圆上的点到点M的距离的最小值。 解(1)由已知可得点A(6,0),F(0,4) 设点P(,),则=+6, ,=4, ,由已知可得 则2+918=0, =或=6. 由于>0,只能=,于是=. 点P的坐标是(,) (2) 直线AP的方程是+6=0. 设点M(,0),则M到直线AP的距离是. 于是=,又66,解得=2. 椭圆上的点(,)到点M的距离有 ,由于66, 当=时,d取得最小值9. (山东卷)已知动圆过定点,且与直线相切,其中.(I)求动圆圆心的轨迹的方程;(II)设A、B是轨迹上异于原点的两个不同点,直线和的倾
17、斜角分别为和,当变化且为定值时,证明直线恒过定点,并求出该定点的坐标.解:(I)如图,设为动圆圆心,为记为,过点作直线的垂线,垂足为,由题意知:即动点到定点与定直线的距离相等,由抛物线的定义知,点的轨迹为抛物线,其中为焦点,为准线,所以轨迹方程为;(II)如图,设,由题意得(否则)且所以直线的斜率存在,设其方程为,显然,将与联立消去,得由韦达定理知(1)当时,即时,所以,所以由知:所以因此直线的方程可表示为,即所以直线恒过定点(2)当时,由,得=将式代入上式整理化简可得:,所以,此时,直线的方程可表示为即所以直线恒过定点所以由(1)(2)知,当时,直线恒过定点,当时直线恒过定点.10. (全国
18、卷))已知椭圆的中心为坐标原点O,焦点在轴上,斜率为1且过椭圆右焦点F的直线交椭圆于A、B两点,与共线。()求椭圆的离心率;()设M为椭圆上任意一点,且,证明为定值。解:设椭圆方程为则直线AB的方程为,代入,化简得.令A(),B),则由与共线,得又,即,所以,故离心率(II)证明:(1)知,所以椭圆可化为设,由已知得 在椭圆上,即由(1)知又,代入得故为定值,定值为1.11. (全国卷) 已知椭圆的中心为坐标原点O,焦点在轴上,斜率为1且过椭圆右焦点F的直线交椭圆于A、B两点,与共线. (1)求椭圆的离心率; (2)设M为椭圆上任意一点,且,证明为定值. 解:设椭圆方程为则直线AB的方程为化简
19、得.令则 共线,得又即,故离心率为(II)证明:由(I)知,所以椭圆可化为.设,由已知得在椭圆上,即 由(I)知又又,代入得 故为定值,定值为112. (全国卷II)、四点都在椭圆上,为椭圆在轴正半轴上的焦点已知与共线,与共线,且求四边形的面积的最小值和最大值解:如图,由条件知MN和PQ是椭圆的两条弦,相交于焦点F(0,1),且PQMN,直线PQ、NM中至少有一条存在斜率,不妨设PQ的斜率为K,又PQ过点F(0,1),故PQ的方程为=+1将此式代入椭圆方程得(2+)+21=0设P、Q两点的坐标分别为(,),(,),则 QPNMFO从而亦即(1)当0时,MN的斜率为,同上可推得 故四边形面积令=
20、得=2当=±1时=2,S=且S是以为自变量的增函数当=0时,MN为椭圆长轴,|MN|=2,|PQ|=。S=|PQ|MN|=2综合知四边形PMQN的最大值为2,最小值为。13(全国卷III) 设两点在抛物线上,是AB的垂直平分线, ()当且仅当取何值时,直线经过抛物线的焦点F?证明你的结论; ()当时,求直线的方程.解:()抛物线,即,焦点为1分(1)直线的斜率不存在时,显然有3分(2)直线的斜率存在时,设为k,截距为b即直线:y=kx+b 由已知得:5分 7分 即的斜率存在时,不可能经过焦点8分所以当且仅当=0时,直线经过抛物线的焦点F9分()当时,直线的斜率显然存在,设为:y=kx
21、+b10分则由()得: 11分13分所以直线的方程为14、(全国卷III) 设,两点在抛物线上,是的垂直平分线。()当且仅当取何值时,直线经过抛物线的焦点?证明你的结论;()当直线的斜率为2时,求在轴上截距的取值范围。21解:()两点到抛物线的准线的距离相等, 抛物线的准线是轴的平行线,依题意不同时为0上述条件等价于上述条件等价于即当且仅当时,经过抛物线的焦点。()设在轴上的截距为,依题意得的方程为;过点的直线方程可写为,所以满足方程 得 为抛物线上不同的两点等价于上述方程的判别式,即设的中点的坐标为,则,由,得,于是即得在轴上截距的取值范围为15.(辽宁卷)已知椭圆的左、右焦点分别是F1(c
22、,0)、F2(c,0),Q是椭圆外的动点,满足点P是线段F1Q与该椭圆的交点,点T在线段F2Q上,并且满足 ()设为点P的横坐标,证明; ()求点T的轨迹C的方程; ()试问:在点T的轨迹C上,是否存在点M, 使F1MF2的面积S=若存在,求F1MF2 的正切值;若不存在,请说明理由.()证法一:设点P的坐标为由P在椭圆上,得由,所以 3分证法二:设点P的坐标为记则由证法三:设点P的坐标为椭圆的左准线方程为 由椭圆第二定义得,即由,所以3分()解法一:设点T的坐标为 当时,点(,0)和点(,0)在轨迹上.当|时,由,得.又,所以T为线段F2Q的中点.在QF1F2中,所以有综上所述,点T的轨迹C
23、的方程是7分解法二:设点T的坐标为 当时,点(,0)和点(,0)在轨迹上.当|时,由,得.又,所以T为线段F2Q的中点. 设点Q的坐标为(),则因此 由得 将代入,可得综上所述,点T的轨迹C的方程是7分 ()解法一:C上存在点M()使S=的充要条件是 由得,由得 所以,当时,存在点M,使S=;当时,不存在满足条件的点M.11分当时,由,得解法二:C上存在点M()使S=的充要条件是 由得 上式代入得于是,当时,存在点M,使S=;当时,不存在满足条件的点M.11分当时,记,由知,所以14分16(湖南卷)已知椭圆C:1(ab0)的左右焦点为F1、F2,离心率为e. 直线l:yexa与x轴y轴分别交于
24、点A、B,M是直线l与椭圆C的一个公共点,P是点F1关于直线l的对称点,设. ()证明:1e2; ()若,PF1F2的周长为6;写出椭圆C的方程; ()确定的值,使得PF1F2是等腰三角形.()证法一:因为A、B分别是直线l:与x轴、y轴的交点,所以A、B的坐标分别是. 所以点M的坐标是(). 由即 证法二:因为A、B分别是直线l:与x轴、y轴的交点,所以A、B的坐标分别是设M的坐标是所以 因为点M在椭圆上,所以 即 解得 ()当时,所以 由MF1F2的周长为6,得 所以 椭圆方程为 ()解法一:因为PF1l,所以PF1F2=90°+BAF1为钝角,要使PF1F2为等腰三角形,必有|
25、PF1|=|F1F2|,即 设点F1到l的距离为d,由 得 所以 即当PF1F2为等腰三角形.解法二:因为PF1l,所以PF1F2=90°+BAF1为钝角,要使PF1F2为等腰三角形,必有|PF1|=|F1F2|,设点P的坐标是,则由|PF1|=|F1F2|得两边同时除以4a2,化简得 从而于是. 即当时,PF1F2为等腰三角形.17(湖南卷)已知椭圆C:1(ab0)的左右焦点为F1、F2,离心率为e. 直线l:yexa与x轴y轴分别交于点A、B,M是直线l与椭圆C的一个公共点,P是点F1关于直线l的对称点,设. ()证明:1e2; ()确定的值,使得PF1F2是等腰三角形.()证法
26、一:因为A、B分别是直线l:与x轴、y轴的交点,所以A、B的坐标分别是. 所以点M的坐标是(). 由即 证法二:因为A、B分别是直线l:与x轴、y轴的交点,所以A、B的坐标分别是设M的坐标是所以 因为点M在椭圆上,所以 即 解得 ()解法一:因为PF1l,所以PF1F2=90°+BAF1为钝角,要使PF1F2为等腰三角形,必有|PF1|=|F1F2|,即 设点F1到l的距离为d,由 得 所以 即当PF1F2为等腰三角形.解法二:因为PF1l,所以PF1F2=90°+BAF1为钝角,要使PF1F2为等腰三角形,必有|PF1|=|F1F2|,设点P的坐标是,则由|PF1|=|F
27、1F2|得两边同时除以4a2,化简得 从而于是. 即当时,PF1F2为等腰三角形.18.(湖北卷)设A、B是椭圆上的两点,点N(1,3)是线段AB的中点,线段AB的垂直平分线与椭圆相交于C、D两点. ()确定的取值范围,并求直线AB的方程;()试判断是否存在这样的,使得A、B、C、D四点在同一个圆上?并说明理由.(I)解法1:依题意,可设直线AB的方程为,整理得 设的两个不同的根, 是线段AB的中点,得解得k=-1,代入得,>12,即的取值范围是(12,+).于是,直线AB的方程为解法2:设依题意,(II)解法1:代入椭圆方程,整理得 的两根,于是由弦长公式可得 将直线AB的方程 同理可
28、得 假设在在>12,使得A、B、C、D四点共圆,则CD必为圆的直径,点M为圆心.点M到直线AB的距离为 于是,由、式和勾股定理可得故当时,A、B、C、D四点均在以M为圆心,为半径的圆上.(注:上述解法中最后一步可按如下解法获得:A、B、C、D共圆ACD为直角三角形,A为直角 由式知,式左边=由和知,式右边= 式成立,即A、B、C、D四点共圆解法2:由(II)解法1及.代入椭圆方程,整理得 将直线AB的方程代入椭圆方程,整理得解和式可得 不妨设计算可得,A在以CD为直径的圆上.又B为A关于CD的对称点,A、B、C、D四点共圆.(注:也可用勾股定理证明ACAD)19.(福建卷)已知方向向量为
29、的直线l过点()和椭圆的焦点,且椭圆C的中心关于直线l的对称点在椭圆C的右准线上. ()求椭圆C的方程;()是否存在过点E(2,0)的直线m交椭圆C于点M、N,满足cot MON0(O为原点).若存在,求直线m的方程;若不存在,请说明理由.(I)解法一:直线, 过原点垂直的直线方程为, 解得椭圆中心(0,0)关于直线的对称点在椭圆C的右准线上,直线过椭圆焦点,该焦点坐标为(2,0). 故椭圆C的方程为 解法二:直线. 设原点关于直线对称点为(p,q),则解得p=3.椭圆中心(0,0)关于直线的对称点在椭圆C的右准线上, 直线过椭圆焦点,该焦点坐标为(2,0). 故椭圆C的方程为 (II)解法一:设M(),N().当直线m不垂直轴时,直线代入,整理得点O到直线MN的距离即 即整理得当直线m垂直x轴时,也满足.故直线m的方程为或或经检验上述直线均满足.所以所求直线方程为或或解法二:设M(),N().当直线m不垂直轴时,直线代入,整理得 E(2,0)是椭圆C的左焦点,|MN|=|ME|+|NE|=以下与解法一相同.解
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年医疗设备试用协议:高品质器械体验承诺版B版
- 2024年产业园区综合物业服务协议版B版
- 2024年全新桶装水零售店产权移交合同版B版
- 2024年中医专家聘用合作协议
- 江南大学《SPSS教育统计软件应用》2022-2023学年第一学期期末试卷
- 2024年声音识别技术研发与许可合同
- 2025蛇年公司开门红启动会模板
- 2024年城市公园树木种植及养护服务协议版B版
- 佳木斯大学《大学日语1》2021-2022学年第一学期期末试卷
- 暨南大学《体能训练学》2021-2022学年第一学期期末试卷
- 广东省深圳市2024年中考英语真题(含答案)
- 云南省楚雄彝族自治州姚安县2024年六年级数学第一学期期末学业水平测试试题含解析
- GB/T 25052-2024连续热浸镀层钢板和钢带尺寸、外形、重量及允许偏差
- 外研版(三起)(2024)三年级上册英语Unit 3《It's a colourful world!》单元整体教学设计(4课时)
- 2024年秋季学期新外研版英语三年级上册课件 Unit 6 第2课时(Speed up)
- 医院病历书写基本规范培训课件
- 2024届川庆钻探工程限公司高校毕业生春季招聘10人高频500题难、易错点模拟试题附带答案详解
- 2《三位数除以两位数》大单元整体设计(教学设计)-2024-2025学年四年级上册数学冀教版
- 人教版九年级物理全一册期末测试卷(附答案与解析)
- 静脉留置针的应用与维护 2
- 无锡苏教版三年级数学上册第五单元《从条件出发分析并解决实际问题(第1课时)》课件
评论
0/150
提交评论