版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、(山东青岛)已知:如图(1),在中,点由出发沿方向向点匀速运动,速度为1cm/s;点由出发沿方向向点匀速运动,速度为2cm/s;连接若设运动的时间为(),解答下列问题:(1)当为何值时,?(2)设的面积为(),求与之间的函数关系式;(3)是否存在某一时刻,使线段恰好把的周长和面积同时平分?若存在,求出此时的值;若不存在,说明理由;AQCPB(4)如图(2),连接,并把沿翻折,得到四边形,那么是否存在某一时刻,使四边形为菱形?若存在,求出此时菱形的边长;若不存在,说明理由AQCPB 图(1) 图(2)【思路点拨】(1)设BP为t,则AQ = 2t,证APQ ABC;(2)过点P作PHAC于H(3
2、)构建方程模型,求t;(4)过点P作PMAC于,PNBC于N,若四边形PQP C是菱形,那么构建方程模型后,能找到对应t的值。(山东青岛)(1)在RtABC中,由题意知:AP = 5t,AQ = 2t,若PQBC,则APQ ABC, (2)过点P作PHAC于HAPH ABC, (3)若PQ把ABC周长平分,则AP+AQ=BP+BC+CQ, 解得:若PQ把ABC面积平分,则, 即3t=3 t=1代入上面方程不成立, 不存在这一时刻t,使线段PQ把RtACB的周长和面积同时平分P BAQPC图MN(4)过点P作PMAC于,PNBC于N,若四边形PQP C是菱形,那么PQPCPMAC于M,QM=CM
3、PNBC于N,易知PBNABC, , ,解得:当时,四边形PQP C 是菱形 此时,在RtPMC中,菱形PQP C边长为(山东德州)(1)MNBC,AMN=B,ANMC AMN ABC ,即 ANx =(04) ABCMND图( 2)OQ(2)如图(2),设直线BC与O相切于点D,连结AO,OD,则AO =OD =MN在RtABC中,BC =5 由(1)知 AMN ABC ,即 , 过M点作MQBC 于Q,则 在RtBMQ与RtBCA中,B是公共角, BMQBCA ABCMNP图 (1)O , x 当x时,O与直线BC相切(3)随点M的运动,当P点落在直线BC上时,连结AP,则O点为AP的中点
4、ABCMNP图 (3)O MNBC, AMN=B,AOMAPC AMO ABP AMMB2 故以下分两种情况讨论: 当02时, 当2时, ABCMNP图 ( 4)OEF 当24时,设PM,PN分别交BC于E,F 四边形AMPN是矩形, PNAM,PNAMx 又 MNBC, 四边形MBFN是平行四边形 FNBM4x 又PEF ACB 当24时, 当时,满足24, 综上所述,当时,值最大,最大值是2 【学力训练】1、(山东威海) 如图,在梯形ABCD中,ABCD,AB7,CD1,ADBC5点M,N分别在边AD,BC上运动,并保持MNAB,MEAB,NFAB,垂足分别为E,FCDABEFNM(1)求
5、梯形ABCD的面积; (2)求四边形MEFN面积的最大值 (3)试判断四边形MEFN能否为正方形,若能,求出正方形MEFN的面积;若不能,请说明理由 1、(山东威海)(1)分别过D,C两点作DGAB于点G,CHAB于点H ABCD, DGCH,DGCH 四边形DGHC为矩形,GHCD1 CDABEFNMGH DGCH,ADBC,AGDBHC90°, AGDBHC(HL) AGBH3 在RtAGD中,AG3,AD5, DG4 CDABEFNMGH(2) MNAB,MEAB,NFAB, MENF,MENF 四边形MEFN为矩形 ABCD,ADBC, AB MENF,MEANFB90
6、76;, MEANFB(AAS) AEBF 设AEx,则EF72x AA,MEADGA90°, MEADGA ME 当x时,ME4,四边形MEFN面积的最大值为(3)能 由(2)可知,设AEx,则EF72x,ME 若四边形MEFN为正方形,则MEEF 即 72x解,得 EF4 四边形MEFN能为正方形,其面积为ABCDERPHQ2、(浙江温州市)如图,在中,分别是边的中点,点从点出发沿方向运动,过点作于,过点作交于,当点与点重合时,点停止运动设,(1)求点到的距离的长;(2)求关于的函数关系式(不要求写出自变量的取值范围);(3)是否存在点,使为等腰三角形?若存在,请求出所有满足要求
7、的的值;若不存在,请说明理由(浙江温州市)(1),点为中点,(2),即关于的函数关系式为:(3)存在,分三种情况:ABCDERPHQM21当时,过点作于,则,ABCDERPHQ,ABCDERPHQ当时,当时,则为中垂线上的点,于是点为的中点,综上所述,当为或6或时,为等腰三角形【例1】(山西太原)如图,在平面直角坐标系中,直线与交于点,分别交轴于点和点,点是直线上的一个动点(1)求点的坐标(2)当为等腰三角形时,求点的坐标AyxDCOB(3)在直线上是否存在点,使得以点为顶点的四边形是平行四边形?如果存在,直接写出的值;如果不存在,请说明理由 【思路点拨】(1)注意直线方程的解与坐标关系;(2
8、)当为等腰三角形时,分三种情况讨论,(3)以点为顶点的四边形是平行四边形三种情形。【例1】(山西太原)(1)在中,当时,点的坐标为在中,当时,点的坐标为(4,0)由题意,得解得点的坐标为 AyxyxD2图(1)图(2)D1CD4D3M2M1OBBOCAD1D2E1E2M4(2)当为等腰三角形时,有以下三种情况,如图(1)设动点的坐标为由(1),得,当时,过点作轴,垂足为点,则,点的坐标为当时,过点作轴,垂足为点,则,解,得(舍去)此时,点的坐标为当,或时,同理可得由此可得点的坐标分别为(3)存在以点为顶点的四边形是平行四边形有以下三种情形,如图(2)当四边形为平行四边形时,当四边形为平行四边形
9、时,当四边形为平行四边形时,【例2】(浙江湖州)已知:在矩形中,分别以所在直线为轴和轴,建立如图所示的平面直角坐标系是边上的一个动点(不与重合),过点的反比例函数的图象与边交于点(1)求证:与的面积相等;(2)记,求当为何值时,有最大值,最大值为多少?(3)请探索:是否存在这样的点,使得将沿对折后,点恰好落在上?若存在,求出点的坐标;若不存在,请说明理由【思路点拨】(1)用的代数式表示与的面积; (2)写出两点坐标(含的代数式表示),利用三角形面积公式解之;(3)设存在这样的点,将沿对折后,点恰好落在边上的点,过点作,垂足为证【例2】(浙江湖州)(1)证明:设,与的面积分别为,由题意得,即与的
10、面积相等(2)由题意知:两点坐标分别为,当时,有最大值(3)解:设存在这样的点,将沿对折后,点恰好落在边上的点,过点作,垂足为由题意得:,又,解得存在符合条件的点,它的坐标为【学力训练】OxyCBED1、(07台州市) 如图,四边形是一张放在平面直角坐标系中的矩形纸片,点在轴上,点在轴上,将边折叠,使点落在边的点处已知折叠,且(1)判断与是否相似?请说明理由;(2)求直线与轴交点的坐标;(3)是否存在过点的直线,使直线、直线与轴所围成的三角形和直线、直线与轴所围成的三角形相似?如果存在,请直接写出其解析式并画出相应的直线;如果不存在,请说明理由【学力训练】1. (07台州市)(1)与相似理由如
11、下:由折叠知,又,(2),设,则由勾股定理得由(1),得,在中,解得,点的坐标为,点的坐标为,设直线的解析式为,解得,则点的坐标为(3)满足条件的直线有2条:,画出两条直线(图略)3、(江苏盐城)如图,在平面直角坐标系中,已知AOB是等边三角形,点A的坐标是(0,4),点B在第一象限,点P是x轴上的一个动点,连结AP,并把AOP绕着点A按逆时针方向旋转,使边AO与AB重合,得到ABD.(1)求直线AB的解析式;(2)当点P运动到点(,0)时,求此时DP的长及点D的坐标;(3)是否存在点P,使OPD的面积等于,若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.图1xyBAODP图2xyB
12、AO3、(江苏盐城)(1)如图,过点B作BEy轴于点E,作BFx 轴于点F.由已知得BF=OE=2, OF= = 点B的坐标是( ,2) 设直线AB的解析式是y=kx+b,则有 解得 HGFExyBAODP直线AB的解析式是y= x+4 (2) 如图,ABD由AOP旋转得到,ABDAOP, AP=AD, DAB=PAO,DAP=BAO=600, ADP是等边三角形,DP=AP= . (2分) 如图,过点D作DHx 轴于点H,延长EB交DH于点G,则BGDH.方法(一)在RtBDG中,BGD=900, DBG=600.BG=BDcos600=×=. DG=BDsin600=×
13、= . OH=EG=, DH= 点D的坐标为( , ) (3)假设存在点P, 在它的运动过程中,使OPD的面积等于 .HGFExyBAODP设点P为(t,0),下面分三种情况讨论:当t0时,如图,BD=OP=t, DG=t, DH=2+t. OPD的面积等于 , ,解得 , ( 舍去) . 点P1的坐标为 (, 0 )当t0时,如图,BD=OP=t, BG=t, x yBAODPHGFEDH=GF=2(t)=2+t. OPD的面积等于, ,解得 , . 点P2的坐标为(, 0),点P3的坐标为(, 0).当t 时,如图,BD=OP=t, DG=t, x yBAODPHGEDH=t2. OPD的
14、面积等于 , ,解得 (舍去), 点P4的坐标为(, 0)综上所述,点P的坐标分别为P1 (, 0)、P2 ( , 0)、P3 ( , 0) 、P4 ( , 0) 【例1】 (浙江杭州) 在直角坐标系xOy中,设点A(0,t),点Q(t,b)。平移二次函数的图象,得到的抛物线F满足两个条件:顶点为Q;与x轴相交于B,C两点(OB<OC),连结A,B。(1)是否存在这样的抛物线F,?请你作出判断,并说明理由;(2)如果AQBC,且tanABO=,求抛物线F对应的二次函数的解析式。【思路点拨】(1)由关系式来构建关于t、b的方程;(2)讨论t的取值范围,来求抛物线F对应的二次函数的解析式。【
15、例1】 (浙江杭州)(1) 平移的图象得到的抛物线的顶点为, 抛物线对应的解析式为:. 抛物线与x轴有两个交点,. 令, 得,, )( )| ,即, 所以当时, 存在抛物线使得.- 2分(2) , , 得: ,解得. 在中,1) 当时,由 , 得, 当时, 由, 解得, 此时, 二次函数解析式为; 当时, 由, 解得, 此时,二次函数解析式为 + +. 2) 当时, 由 , 将代, 可得, ,(也可由代,代得到)所以二次函数解析式为 + 或. BOAPM【例3】(浙江丽水)如图,在平面直角坐标系中,已知点坐标为(2,4),直线与轴相交于点,连结,抛物线从点沿方向平移,与直线交于点,顶点到点时停
16、止移动(1)求线段所在直线的函数解析式;(2)设抛物线顶点的横坐标为,用的代数式表示点的坐标;当为何值时,线段最短;(3)当线段最短时,相应的抛物线上是否存在点,使的面积与的面积相等,若存在,请求出点的坐标;若不存在,请说明理由【思路点拨】(2)构建关于的二次函数,求此函数的最小值;(3)分当点落在直线的下方时、当点落在直线的上方时讨论。BOAPM(第24题)【例3】(浙江丽水)(1)设所在直线的函数解析式为,(2,4),, ,所在直线的函数解析式为(2)顶点M的横坐标为,且在线段上移动, (02).顶点的坐标为(,).抛物线函数解析式为.当时,(02).点的坐标是(2,). =, 又02,当
17、时,PB最短(3)当线段最短时,此时抛物线的解析式为.假设在抛物线上存在点,使. 设点的坐标为(,).当点落在直线的下方时,过作直线/,交轴于点,DOABPMCE,点的坐标是(0,).点的坐标是(2,3),直线的函数解析式为.,点落在直线上.=.解得,即点(2,3).点与点重合.此时抛物线上不存在点,使与的面积相等.当点落在直线的上方时,作点关于点的对称称点,过作直线/,交轴于点,、的坐标分别是(0,1),(2,5),直线函数解析式为.,点落在直线上.=.解得:,.代入,得,.此时抛物线上存在点,使与的面积相等. 综上所述,抛物线上存在点, 使与的面积相等.【例4】(广东省深圳市)如图1,在平
18、面直角坐标系中,二次函数的图象的顶点为D点,与y轴交于C点,与x轴交于A、B两点, A点在原点的左侧,B点的坐标为(3,0),OBOC ,tanACO(1)求这个二次函数的表达式(2)经过C、D两点的直线,与x轴交于点E,在该抛物线上是否存在这样的点F,使以点A、C、E、F为顶点的四边形为平行四边形?若存在,请求出点F的坐标;若不存在,请说明理由(3)若平行于x轴的直线与该抛物线交于M、N两点,且以MN为直径的圆与x轴相切,求该圆半径的长度(4)如图2,若点G(2,y)是该抛物线上一点,点P是直线AG下方的抛物线上一动点,当点P运动到什么位置时,APG的面积最大?求出此时P点的坐标和APG的最
19、大面积.【思路点拨】(2)可先以A、C、E、F为顶点的四边形为平行四边形时,求F点的坐标,再代入抛物线的表达式检验。(3)讨论当直线MN在x轴上方时、当直线MN在x轴下方时二种情况。(4)构建S关于x的二次函数,求它的最大值。【例4】(广东省深圳市)(1)方法一:由已知得:C(0,3),A(1,0) 将A、B、C三点的坐标代入得 解得: 所以这个二次函数的表达式为: (2)存在,F点的坐标为(2,3) 易得D(1,4),所以直线CD的解析式为:E点的坐标为(3,0) 以A、C、E、F为顶点的四边形为平行四边形F点的坐标为(2,3)或(2,3)或(4,3) 代入抛物线的表达式检验,只有(2,3)
20、符合存在点F,坐标为(2,3) (3)如图,当直线MN在x轴上方时,设圆的半径为R(R>0),则N(R+1,R),代入抛物线的表达式,解得 当直线MN在x轴下方时,设圆的半径为r(r>0),则N(r+1,r),代入抛物线的表达式,解得圆的半径为或 (4)过点P作y轴的平行线与AG交于点Q,易得G(2,3),直线AG为设P(x,),则Q(x,x1),PQ 当时,APG的面积最大此时P点的坐标为, 2、(广东肇庆)已知点A(a,)、B(2a,y)、C(3a,y)都在抛物线上.(1)求抛物线与x轴的交点坐标;(2)当a=1时,求ABC的面积;(3)是否存在含有、y、y,且与a无关的等式?
21、如果存在,试给出一个,并加以证明;如果不存在,说明理由.2、(广东肇庆)(1)由5=0,(1分)得,抛物线与x轴的交点坐标为(0,0)、(,0)(3分)(2)当a=1时,得A(1,17)、B(2,44)、C(3,81),分别过点A、B、C作x轴的垂线,垂足分别为D、E、F,则有=S - - =-=5(个单位面积)(3)如: 事实上, =45a2+36a 3()=35×(2a)2+12×2a-(5a2+12a) =45a2+36a 3、(青海西宁)如图,已知半径为1的与轴交于两点,为的切线,切点为,圆心的坐标为,二次函数的图象经过两点yxOABMO1(1)求二次函数的解析式;
22、(2)求切线的函数解析式;(3)线段上是否存在一点,使得以为顶点的三角形与相似若存在,请求出所有符合条件的点的坐标;若不存在,请说明理由3、(青海西宁)(1)圆心的坐标为,半径为1,1分二次函数的图象经过点,可得方程组解得:二次函数解析式为(2)过点作轴,垂足为 是的切线,为切点,(圆的切线垂直于经过切点的半径)yAHFMOP1P2O1xB在中,为锐角,在中,点坐标为设切线的函数解析式为,由题意可知,切线的函数解析式为(3)存在过点作轴,与交于点可得(两角对应相等两三角形相似),过点作,垂足为,过点作,垂足为可得(两角对应相等两三角开相似)在中,在中,符合条件的点坐标有,AOxyBFC4、(辽
23、宁12市)如图,在平面直角坐标系中,直线与轴交于点,与轴交于点,抛物线经过三点(1)求过三点抛物线的解析式并求出顶点的坐标;(2)在抛物线上是否存在点,使为直角三角形,若存在,直接写出点坐标;若不存在,请说明理由;(3)试探究在直线上是否存在一点,使得的周长最小,若存在,求出点的坐标;若不存在,请说明理由4、(辽宁12市)解:(1)直线与轴交于点,与轴交于点,点都在抛物线上, 抛物线的解析式为顶点(2)存在AOxyBFC图9HBM(3)存在理由:解法一:延长到点,使,连接交直线于点,则点就是所求的点 过点作于点点在抛物线上,在中,在中,设直线的解析式为 解得 解得 在直线上存在点,使得的周长最
24、小,此时5、(四川资阳)如图,已知点A的坐标是(1,0),点B的坐标是(9,0),以AB为直径作O,交y轴的负半轴于点C,连接AC、BC,过A、B、C三点作抛物线(1)求抛物线的解析式;(2)点E是AC延长线上一点,BCE的平分线CD交O于点D,连结BD,求直线BD的解析式;(3)在(2)的条件下,抛物线上是否存在点P,使得PDBCBD?如果存在,请求出点P的坐标;如果不存在,请说明理由5、(四川资阳) (1) 以AB为直径作O,交y轴的负半轴于点C,OCA+OCB=90°,又OCB+OBC=90°,图10OCA=OBC,又AOC= COB=90°,AOC COB
25、,又A(1,0),B(9,0),解得OC=3(负值舍去)C(0,3),设抛物线解析式为y=a(x+1)(x9),3=a(0+1)(09),解得a=,二次函数的解析式为y=(x+1)(x9),即y=x2x3 (2) AB为O的直径,且A(1,0),B(9,0),OO=4,O(4,0),点E是AC延长线上一点,BCE的平分线CD交O于点D,BCD=BCE=×90°=45°,连结OD交BC于点M,则BOD=2BCD=2×45°=90°,OO=4,OD=AB=5D(4,5)图10答案图1设直线BD的解析式为y=kx+b(k0)解得直线BD的解
26、析式为y=x9.(3) 假设在抛物线上存在点P,使得PDB=CBD,设射线DP交O于点Q,则分两种情况(如答案图1所示):O(4,0),D(4,5),B(9,0),C(0,3)把点C、D绕点O逆时针旋转90°,使点D与点B重合,则点C与点Q1重合,因此,点Q1(7,4)符合,D(4,5),Q1(7,4),用待定系数法可求出直线DQ1解析式为y=x解方程组得点P1坐标为(,),坐标为(,)不符合题意,舍去Q1(7,4),点Q1关于x轴对称的点的坐标为Q2(7,4)也符合D(4,5),Q2(7,4)用待定系数法可求出直线DQ2解析式为y=3x17解方程组得点P2坐标为(14,25),坐标
27、为(3,8)不符合题意,舍去符合条件的点P有两个:P1(,),P2(14,25)yxODECFAB6、(辽宁沈阳)如图所示,在平面直角坐标系中,矩形的边在轴的负半轴上,边在轴的正半轴上,且,矩形绕点按顺时针方向旋转后得到矩形点的对应点为点,点的对应点为点,点的对应点为点,抛物线过点(1)判断点是否在轴上,并说明理由;(2)求抛物线的函数表达式;(3)在轴的上方是否存在点,点,使以点为顶点的平行四边形的面积是矩形面积的2倍,且点在抛物线上,若存在,请求出点,点的坐标;若不存在,请说明理由6、(辽宁沈阳)(1)点在轴上理由如下:连接,如图所示,在中,由题意可知:点在轴上,点在轴上(2)过点作轴于点
28、,在中,点在第一象限,点的坐标为由(1)知,点在轴的正半轴上点的坐标为点的坐标为抛物线经过点,由题意,将,代入中得 解得所求抛物线表达式为:(3)存在符合条件的点,点10分理由如下:矩形的面积以为顶点的平行四边形面积为由题意可知为此平行四边形一边,又边上的高为2依题意设点的坐标为点在抛物线上解得,以为顶点的四边形是平行四边形,yxODECFABM,当点的坐标为时,点的坐标分别为,;当点的坐标为时,点的坐标分别为,7、(苏州市)如图,抛物线ya(x1)(x5)与x轴的交点为M、N直线ykxb与x轴交于P(2,0),与y轴交于C若A、B两点在直线ykxb上,且AO=BO=,AOBOD为线段MN的中
29、点,OH为RtOPC斜边上的高(1)OH的长度等于_;k_,b_;(2)是否存在实数a,使得抛物线ya(x1)(x5)上有一点E,满足以D、N、E为顶点的三角形与AOB相似?若不存在,说明理由;若存在,求所有符合条件的抛物线的解析式,同时探索所求得的抛物线上是否还有符合条件的E点(简要说明理由);并进一步探索对符合条件的每一个E点,直线NE与直线AB的交点G是否总满足PB·PG,写出探索过程【例2】(黄石市)如图,已知抛物线与轴交于点,与轴交于点(1)求抛物线的解析式及其顶点的坐标;(2)设直线交轴于点在线段的垂直平分线上是否存在点,使得点到直线的距离等于点到原点的距离?如果存在,求
30、出点的坐标;如果不存在,请说明理由;ABCOxy(3)过点作轴的垂线,交直线于点,将抛物线沿其对称轴平移,使抛物线与线段总有公共点试探究:抛物线向上最多可平移多少个单位长度?向下最多可平移多少个单位长度?【思路点拨】(2)设,建立关于t的方程;(3)考虑抛物线向上平移、向下平移两种情况。【例2】(黄石市)(1)设抛物线解析式为,把代入得,顶点(2)假设满足条件的点存在,依题意设,由求得直线的解析式为,它与轴的夹角为,设的中垂线交于,则则,点到的距离为ABCOxyDFHPE又平方并整理得:存在满足条件的点,的坐标为(3)由上求得若抛物线向上平移,可设解析式为当时,当时,或若抛物线向下移,可设解析
31、式为由,有,向上最多可平移72个单位长,向下最多可平移个单位长26(12分)(2013大连)如图,抛物线y=x2+x4与x轴相交于点A、B,与y轴相交于点C,抛物线的对称轴与x轴相交于点MP是抛物线在x轴上方的一个动点(点P、M、C不在同一条直线上)分别过点A、B作直线CP的垂线,垂足分别为D、E,连接点MD、ME (1)求点A,B的坐标(直接写出结果),并证明MDE是等腰三角形;(2)MDE能否为等腰直角三角形?若能,求此时点P的坐标;若不能,说明理由;(3)若将“P是抛物线在x轴上方的一个动点(点P、M、C不在同一条直线上)”改为“P是抛物线在x轴下方的一个动点”,其他条件不变,MDE能否
32、为等腰直角三角形?若能,求此时点P的坐标(直接写出结果);若不能,说明理由考点:二次函数综合题分析:(1)在抛物线解析式中,令y=0,解一元二次方程,可求得点A、点B的坐标;如答图1所示,作辅助线,构造全等三角形AMFBME,得到点M为为RtEDF斜边EF的中点,从而得到MD=ME,问题得证;(2)首先分析,若MDE为等腰直角三角形,直角顶点只能是点M如答图2所示,设直线PC与对称轴交于点N,首先证明ADMNEM,得到MN=AM,从而求得点N坐标为(3,2);其次利用点N、点C坐标,求出直线PC的解析式;最后联立直线PC与抛物线的解析式,求出点P的坐标(3)当点P是抛物线在x轴下方的一个动点时
33、,解题思路与(2)完全相同解答:解:(1)抛物线解析式为y=x2+x4,令y=0,即x2+x4=0,解得x=1或x=5,A(1,0),B(5,0)如答图1所示,分别延长AD与EM,交于点FADPC,BEPC,ADBE,MAF=MBE在AMF与BME中,AMFBME(ASA),ME=MF,即点M为RtEDF斜边EF的中点,MD=ME,即MDE是等腰三角形(2)答:能抛物线解析式为y=x2+x4=(x3)2+,对称轴是直线x=3,M(3,0);令x=0,得y=4,C(0,4)MDE为等腰直角三角形,有3种可能的情形:若DEEM,由DEBE,可知点E、M、B在一条直线上,而点B、M在x轴上,因此点E
34、必然在x轴上,由DEBE,可知点E只能与点O重合,即直线PC与y轴重合,不符合题意,故此种情况不存在;若DEDM,与同理可知,此种情况不存在;若EMDM,如答图2所示:设直线PC与对称轴交于点N,EMDM,MNAM,EMN=DMA在ADM与NEM中,ADMNEM(ASA),MN=MA抛物线解析式为y=x2+x4=(x3)2+,故对称轴是直线x=3,M(3,0),MN=MA=2,N(3,2)设直线PC解析式为y=kx+b,点N(3,2),C(0,4)在抛物线上,解得k=2,b=4,y=2x4将y=2x4代入抛物线解析式得:2x4=x2+x4,解得:x=0或x=,当x=0时,交点为点C;当x=时,
35、y=2x4=3P(,3)综上所述,MDE能成为等腰直角三角形,此时点P坐标为(,3)(3)答:能如答题3所示,设对称轴与直线PC交于点N与(2)同理,可知若MDE为等腰直角三角形,直角顶点只能是点MMDME,MAMN,DMN=EMB在DMN与EMB中,DMNEMB(ASA),MN=MBN(3,2)设直线PC解析式为y=kx+b,点N(3,2),C(0,4)在抛物线上,解得k=,b=4,y=x4将y=x4代入抛物线解析式得:x4=x2+x4,解得:x=0或x=,当x=0时,交点为点C;当x=时,y=x4=P(,)综上所述,MDE能成为等腰直角三角形,此时点P坐标为(,)点评:本题是二次函数综合题
36、型,考查了二次函数与一次函数的图象与性质、待定系数法、全等三角形的判定与性质、等腰直角三角形、解方程等知识点,题目难度较大第(2)(3)问均为存在型问题,且解题思路完全相同,可以互相借鉴印证26(14分)(2013锦州)如图,抛物线y=x2+mx+n经过ABC的三个顶点,点A坐标为(0,3),点B坐标为(2,3),点C在x轴的正半轴上(1)求该抛物线的函数关系表达式及点C的坐标;(2)点E为线段OC上一动点,以OE为边在第一象限内作正方形OEFG,当正方形的顶点F恰好落在线段AC上时,求线段OE的长;(3)将(2)中的正方形OEFG沿OC向右平移,记平移中的正方形OEFG为正方形DEFG,当点
37、E和点C重合时停止运动设平移的距离为t,正方形DEFG的边EF与AC交于点M,DG所在的直线与AC交于点N,连接DM,是否存在这样的t,使DMN是等腰三角形?若存在,求出t的值;若不存在,请说明理由;(4)在上述平移过程中,当正方形DEFG与ABC的重叠部分为五边形时,请直接写出重叠部分的面积S与平移距离t的函数关系式及自变量t的取值范围;并求出当t为何值时,S有最大值,最大值是多少?考点:二次函数综合题分析:(1)利用待定系数法求出抛物线的解析式,令y=0解方程,求出点C的坐标;(2)如答图1所示,由CEFCOA,根据比例式列方程求出OE的长度;(3)如答图2所示,若DMN是等腰三角形,可能
38、有三种情形,需要分类讨论;(4)当正方形DEFG与ABC的重叠部分为五边形时,如答图3所示利用S=S正方形DEFGS梯形MEDNSFJK求出S关于t的表达式,然后由二次函数的性质求出其最值解答:解:(1)抛物线y=x2+mx+n经过点A(0,3),B(2,3),解得:,抛物线的解析式为:y=x2+x+3令y=0,即x2+x+3=0,解得x=6或x=4,点C位于x轴正半轴上,C(6,0)(2)当正方形的顶点F恰好落在线段AC上时,如答图1所示:设OE=x,则EF=x,CE=OCOE=6xEFOA,CEFCOA,即,解得x=2OE=2(3)存在满足条件的t理由如下:如答图2所示,易证CEMCOA,
39、即,得ME=2t过点M作MHDN于点H,则DH=ME=2t,MH=DE=2易证MNHCOA,即,得NH=1DN=DH+HN=3t在RtMNH中,MH=2,NH=1,由勾股定理得:MN=DMN是等腰三角形:若DN=MN,则3t=,解得t=6;若DM=MN,则DM2=MN2,即22+(2t)2=()2,解得t=2或t=6(不合题意,舍去);若DM=DN,则DM2=DN2,即22+(2t)2=(3t)2,解得t=1综上所述,当t=1、2或6时,DMN是等腰三角形(4)当正方形DEFG与ABC的重叠部分为五边形时,如答图3所示:设EF、DG分别与AC交于点M、N,由(3)可知:ME=2t,DN=3t设
40、直线BC的解析式为y=kx+b,将点B(2,3)、C(6,0)代入得:,解得,y=x+设直线BC与EF交于点K,xK=t+2,yK=xK+=t+3,FK=yFyK=2(t+3)=t1;设直线BC与GF交于点J,yJ=2,2=xJ+,得xJ=,FJ=xFxJ=t+2=tS=S正方形DEFGS梯形MEDNSFJK=DE2(ME+DN)DEFKFJ=22(2t)+(3t)×2(t1)(t)=t2+2t过点G作GHy轴于点H,交AC于点I,则HI=2,HJ=,t的取值范围是:2tS与t的函数关系式为:S=t2+2t(2t)S=t2+2t=(t)2+1,0,且2,当t=时,S取得最大值,最大值
41、为1点评:本题是典型的运动型二次函数压轴题,考查了二次函数的图象与性质、待定系数法、一次函数、相似三角形、勾股定理、图形面积计算、最值问题等知识点,考查了运动型问题、存在型问题和分类讨论的数学思想,难度较大解题关键是理解图形的运动过程26(14分)(2013营口)如图,抛物线与x轴交于A(1,0)、B(3,0)两点,与y轴交于点C(0,3),设抛物线的顶点为D(1)求该抛物线的解析式与顶点D的坐标(2)试判断BCD的形状,并说明理由(3)探究坐标轴上是否存在点P,使得以P、A、C为顶点的三角形与BCD相似?若存在,请直接写出点P的坐标;若不存在,请说明理由考点:二次函数综合题分析:(1)利用待
42、定系数法即可求得函数的解析式;(2)利用勾股定理求得BCD的三边的长,然后根据勾股定理的逆定理即可作出判断;(3)分p在x轴和y轴两种情况讨论,舍出P的坐标,根据相似三角形的对应边的比相等即可求解解答:解:(1)设抛物线的解析式为y=ax2+bx+c由抛物线与y轴交于点C(0,3),可知c=3即抛物线的解析式为y=ax2+bx+3把点A(1,0)、点B(3,0)代入,得解得a=1,b=2抛物线的解析式为y=x22x+3y=x22x+3=(x+1)2+4顶点D的坐标为(1,4);(2)BCD是直角三角形理由如下:解法一:过点D分别作x轴、y轴的垂线,垂足分别为E、F在RtBOC中,OB=3,OC
43、=3,BC2=OB2+OC2=18在RtCDF中,DF=1,CF=OFOC=43=1,CD2=DF2+CF2=2在RtBDE中,DE=4,BE=OBOE=31=2,BD2=DE2+BE2=20BC2+CD2=BD2BCD为直角三角形解法二:过点D作DFy轴于点F在RtBOC中,OB=3,OC=3OB=OCOCB=45°在RtCDF中,DF=1,CF=OFOC=43=1DF=CFDCF=45°BCD=180°DCFOCB=90°BCD为直角三角形(3)BCD的三边,=,又=,故当P是原点O时,ACPDBC;当AC是直角边时,若AC与CD是对应边,设P的坐标
44、是(0,a),则OC=3a,=,即=,解得:a=9,则P的坐标是(0,7),三角形ACP不是直角三角形,则ACPCBD不成立;当AC是直角边,若AC于BC是对应边时,设P的坐标是(0,b),则OC=3b,则=,即=,解得:b=,故P是(0,)时,则PCACBD一定成立;当P在y轴上时,AC是直角边,P一定在B的左侧,设P的坐标是(d,0)则AB=1d,当AC与CD是对应边时,=,即=,解得:d=13,此时,两个三角形不相似;当P在y轴上时,AC是直角边,P一定在B的左侧,设P的坐标是(e,0)则AB=1e,当AC与BC是对应边时,=,即=,解得:e=9,符合条件总之,符合条件的点P的坐标为:点
45、评:本题是相似三角形的判定与性质,待定系数法,勾股定理以及其逆定理的综合应用22. (满分16分)已知二次函数的图象如图所示 求二次函数的解析式及抛物线顶点M的坐标; 若点N为线段BM上的一点,过点N作x轴的垂线,垂足为点Q当点N在线段BM上运动时(点N不与点B,点M重合),设NQ的长为t,四边形NQAC的面积为s,求s与t之间的函数关系式及自变量t的取值范围; 在对称轴右侧的抛物线上是否存在点P,使PAC为直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,请说明理由; 将OAC补成矩形,使上OAC的两个顶点成为矩形一边的两个顶点,第三个顶点落在矩形这一边的对边上,试直接写出矩形的未
46、知的顶点坐标(不需要计算过程)2004黄岗市22.(16分)在直角坐标系xOy中,O为坐标原点,A、B、C三点的坐标分别为A(5,0),B(0,4),C(1,0),点M和点N在x轴上(点M在点N的左边),点N在原点的右边,作MPBN,垂足为P(点P在线段BN上,且点P与点B不重合),直线MP与y轴交于点G,MGBN,求经过A、B、C三点的抛物线的解析式;求点M的坐标;设ONt,MOG的面积为S,求S与t的函数关系式,并写出自变量x的取值范围;过点B作直线BK平行于x轴,在直线BK上是否存在点R,使ORA为等腰三角形,若存在,请直接写出点R的坐标,若不存在,请说明理由,22、(05黄冈本题满分16分)如图,在直角坐标系中,O是原点,A、B、C三点的坐标分别为A(18,0),B(18,6),C(8,6),四边形OABC是梯形,点P、Q同时从原点出发,分别坐匀速运动,其中点P沿OA向终点A运动,速度为每秒1个单位,点Q沿OC
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《基础化学综合实验A》教学大纲
- 幼儿园0的意义课件
- 交通工程设施设计教案
- 玉溪师范学院《网络思想政治教育》2022-2023学年第一学期期末试卷
- 玉溪师范学院《商务谈判》2022-2023学年第一学期期末试卷
- 玉溪师范学院《篮球主项》2021-2022学年第一学期期末试卷
- 房地产营销策划 -雅安国际旅游度假区 2023-2024年度系列营销活动策划方案
- 2023年水路货物运输服务项目评估分析报告
- 2019湘美版 高中美术 选择性必修6 现代媒体艺术《第一单元 摄影》大单元整体教学设计2020课标
- 2024届河北省定州市全国统一招生高考押题卷数学试题(一)
- 脊髓损伤课件
- 汽油柴油运输安全知识讲座
- 关于生殖健康知识讲座
- 催化剂装卸方案
- 儿童超重与肥胖培训课件
- 废弃物管理与处理培训分类与安全处置技巧
- 曲臂登高车管理与维护
- 手术中获得性压力性损伤护理课件
- 初中八年级语文课件-五种表达方式及区分
- 你画我猜题目
- 医疗器械设计更改评估报告
评论
0/150
提交评论