版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第二章2.1(曾海斌)物体上某点的应力张量ij为ij=(应力单位)求出:(a)面积单位上应力矢量的大小,该面元上的法线矢量为n=(1/2,1/2,1/);(b)应力主轴的方位;(c)主应力的大小;(d)八面体应力的大小;(e)最大剪应力的大小。解答:(a)利用式(2.26)计算应力矢量的分量i,得1=1jnj=11n1+12n2 +13n3 = 0 ;同样 2= jnj =272.47 3=3jnj =157.31 所以,应力矢量的大小为(1 )2 +(2 )2+(3)21/2=314.62(b)(c)特征方程:3I12 + I2I3=0其中I1 =ij 的对角项之和、I2 =ij 的对角项余
2、子式之和、I3 =ij的行列式。从一个三次方程的根的特征性可证明:I1 =1+2+3 I2=12+23+31I3=123其中得,1=400、2=3=0 是特征方程的根。将1、2和3分别代入(2.43),并使用恒等式n12+ n22 + n32=1可决定对应于主应力每个值的单位法线ni的分量(n1 、n2 、n3):ni(1)=(0, ±0.866,±0.5)ni(2)=(0, 0.5,±0.866)ni(3)=(±1, 0,0)注意主方向2和3不是唯一的,可以选用与轴1正交的任何两个相互垂直的轴。(d)由式(2.96),可算otc=1/3(0+100+3
3、00)=133.3otc=1/3(90000+40000+10000+6*30000) 1/2=188.56(e) 已经求得1=400、2=3=0,则有(2.91)给出的最大剪应力为max=2002.2(曾海斌)对于给定的应力张量ij,求出主应力以及它们相应的主方向。ij=(应力单位)(a)从给定的ij和从主应力值1,2和3中确定应力不变量I1,I2和I3;(b)求出偏应力张量Sij;(c)确定偏应力不变量J1,J2和J3;(d)求出八面体正应力与剪应力。解答:同上题2.1(a)(b)(c)方法得到1=4、2= 2 、3=1对应于主应力每个值的单位法线ni的分量(n1 、n2 、n3):ni(
4、1)=(0, ,±)ni(2)=(±, 0.5,0.5)ni(3)=(±, ±0.5,±0.5)(a)特征方程:3I12 + I2I3=0中I1 =ij 的对角项之和、I2 =ij 的对角项余子式之和、I3 =ij的行列式。代入数据的:I1 =7;I2 =14;I3 =8(b)偏应力张量由式子(2.119)得出Sij=12-pij ,其中p=7/3Sij=-(c)J1= Sii=0,J2=1/64+1+9=2.333, J3=1/27(2*49+9*7*14+27*8)=0.741(d) otc=1/3*7=2.333otc= /3(I12-3
5、 I2) 1/2=1.2472.3(李云雷)(a)解释:如果 (b)解释:可以为负值吗? (c)解释: 可以为正值吗?解: (a)不能,因为所以不能等于0. (b)因为,所以不可能为负值。 (c)可以,当中有一个正数,两个负数时为正值。2.7 (金晶)证明以下关系(a)证明:(b)证明:(c)证明:(d) 证明:2.9(梁健伟)证明:从一个给定的应力状态中加上静水应力,其主方向不改变。证明:设静水应力为,从主方向的定义有,从给定的应力状态中减去静水应力得,即:把等式右边的移项到左边得所以从一个给定的应力状态中减去一个静水应力,其主方向不变。2.10(张东升) 证明:通过在应力原始状态中加上静水
6、拉力或压力,不改变作用于过某定点任何平面的剪应力分量。证明:关于主应力轴,任意平面上是用, 由式给出。现假设静水应力状态()是被叠加上去,得一组主应力。对于这一新的应力状态,在任意斜截面上的剪应力分量由下式得出:由恒等式,将上式展开化简得。这表明,原结论成立。2.11 (黄耀洪)画出例2.6中式(2.135)和式(2.136)中所给出的在主应力空间上的两个应力状态,并画出它们在偏平面上的投影。求的主应力,代入解得 同理,解得的主应力 在主应力空间上的两个应力状态如下图所示:求的 、 同理,求得的 、 在偏平面上的投影如下图所示:2.12 (李松) 如果ijtjk=tijjk, ij和tij为两
7、点的两个应力状态,证明两个应力状态的主轴重合。注意不必将tij作为另一个应力张量如第三章的应变张量一样,且主轴重合保持不变条件。(提示:将其中一种应力状态换到主坐标系上)证明:由题意得:ijtjk=tijjk 对i、j取1至3展开关系式得: 11t1k+12t2k+13t3k= t111k+ t122k+ t133k (1) 21t1k+22t2k+23t3k= t211k+ t222k+ t233k (2) 31t1k+32t2k+33t3k= t311k+ t322k+ t333k (3) 参照ij的主轴,即ij时,ij=0. 所以,对于(1)式 K分别取2、3.由于ij时,ij=0. 则
8、有: K=2时,1t12=t122 ;k=3时,1t13=t133 对于123,t12=0和t13=0. 同理由(2)(3)式可得: t21=0和t23=0,t31=0和t32=0.一般地,ij时,tij=0. 所以tij的主方向与ij的主方向重合2.14 (卢俊坤)在偏平面上画出下列函数:(a)(b)(c)其中,为常数。解:(a)依题意得:将 代入 得 所以,在偏平面上的图像为以三轴交点为圆心,半径为的圆。函数图象如图a所示(利用Matlab绘制,图线与最外围的黑线圆重合,绘图时常数暂不考虑)。图a (b)依题意得:由 及 得: 和 再代入 得: 函数图象如图b所示(利用Excel和Matl
9、ab绘制,以为x轴,绘图时常数暂不考虑)。 图b (c)依题意得:由 得: 再得: 令 得 函数图象如图c所示(利用Excel和Matlab绘制,以为x轴,绘图时常数暂不考虑)。 图c2.15 (兰成)如果由两个应力状态叠加得出一个应力状态,证明:(a)其最大主应力不大于单独的最大主应力之和;(b)其最大剪应力不大于单独的最大剪应力之和;(c)静水压力分量的合成是两个单独状态简单的代数相加,但剪力分量合成是两个单独状态的矢量相加。证明:假设两个应力状态为:和叠加之后得到:正应力为,剪应力为。(a) 应力状态的叠加是矢量的叠加,当这两个应力状态的方向相同时,叠加之后得到的应力状态方向也相同,其最
10、大主应力等于两个单独的最大主应力之和;当方向相反时,最大主应力为两个单独的最大主应力之差;当两个应力状态的方向不同时,叠加之后得到的应力状态的方向沿两个应力状态方向所夹的平行四边形的对角线方向,根据平行四边形法则,其最大主应力小于单独的最大主应力之和。所以,叠加之后其最大主应力不大于单独的最大主应力之和。(b) 同(a)的分析方法,两个应力状态方向相同时,叠加后最大剪应力等于单独的最大剪应力之和;方向相反时,叠加后最大剪应力等于单独的最大剪应力之差;方向不同时,根据平行四边形法则,叠加后最大剪应力小于单独的最大剪应力之和。所以,叠加之后其最大剪应力不大于单独的最大剪应力之和。(c) 因为静水压
11、力张量相当于常数正应力张量,两个常数正应力张量方向一致,其合成不改变其主方向。因此,静水压力分量的合成是两个单独状态简单的代数相加。因为在所有方向上加减一个常数正应力不会改变其主方向,偏应力张量与原应力张量的方向一致。所以剪力分量合成相当于原应力张量合成,即矢量相加。2.16 (黄莉根)从式(2.172)出发,其中s1=(21-2-3)/3,并利用式(2.104)式(2.113)给出的关系(对于123): (a) 证明 (b) 证明对于01,在0/3的范围内变化;(c) 定义称作Lode的应力参数为 证明以下关系:( i ) =2-1;(ii ) (iii) 证明:(a) 由式(2.172)知
12、 s1=(21-2-3)/3=(1-2)+(1-3)/3=212+213/3 123,则有 12=min 13=max s1=2min+max/3 又由式(2.134) 其中用到式(2.110),证毕。 (b) 令:,其中: ,分子分母除以,配方可得下式:,其中:可以解得:即:,则,证毕。 (c) ( i ) (i i) (iii) 如果123,即01则 -1=1-212.17 (周浩超、陈康海) 考虑对于主偏应力的式(2.129) s3-J2-J3=0并代入s=rsin导出 Sin3-J2r2sin-J3r3=0 (a) 考虑后一等式与三角几何恒等式 的相似性,采用 和 证明r和对于J2和J
13、3是不变量。解:因为 题目中已知,而式(2.172) 可得 因为的值为与偏应力不变量和有关的不变量。 所以说和与,有关的不变量。即r和对于J2和J3 是不变量。 (b)利用(a)中得出的结果及式(2.166)和式(2.175)证明: (i)解:式(2.166) 式 (2.175) 可知 得 得证 (ii)对于03,=-6,以及在-/63范围内变化。解:已知 而 (c)对于由主应力123定义的任意应力状态,并考虑在平面上的投影(如图2.30所示),求解在以下条件中相应的和:(i) =3 或 =1;解:已知 , , 由于代入已知式子,得, (ii)=1 或 =0,=-1; 解: (iii) 或,
14、解: , ,2.18 (李树旺、李炜) 对于纤维增强(金属基)复合材料,考虑下面的“屈服函数”: 其中,第三章3.1(黄耀洪)给定一点上的相对位移量,试证明对于坐标轴的转换是不变量。证明:3.1 (张东升)给定一点上的相对位移张量,试证明对于坐标轴的转换是不变量。证明:给定一点上的相对位移张量。在无限小变形情况下,其各分量很小,其乘积与其分量一次项相比可忽略不计。设线元OP=单位矢量n,假设线元在纯刚体运动后所处新位置为,则。因考虑的是无限小变形,的高次项被忽略,由代入上式得:,即。因为对于任意值上式必须成立,所以张量代表刚体旋转的必要充分条件为:。所以。3.2 (梁健伟)给定一点上的相对位移
15、张量为计算:(a) 应变张量;(b) 旋转张量;(c) 主应变,和及其主方向;(d) 对具有方向的纤维元,找出应变矢量,转动矢量和相对位移矢量。解:(a) 由公式:由已知条件可得:(b) 由公式:由已知条件可得: (c) 由主应变特征方程:=0.65=0.799=0.074带入特征方程中可以解得:由公式,将带入可得到:主方向: ;主方向: ;主方向: (d) 由得 由得由得3.3 (黄莉根、卢俊坤)给定一点上的相对位移张量为 计算:(a)主应变和主方向;(b)最大剪应变;(c)八面体应变;(d)具有方向n=(0.25,0.58,0.775)的纤维元的正应变分量和合剪应变分量;(e)偏应变张量及
16、其不变量和;(f)单位体积的体积变化(膨胀)(g)应变不变量和。 解:(a)应变不变量 I1'=0.023+0.009+0.013=0.045 =(0.023)(0.009)-(-0.015)(-0.015)+(0.009)(0.013)-(0.008)(0.008)+(0.023)(0.013)-(0.001)(0.001)=0.000333 特征方程为: 三个主应变为代入主应变解得各个对应的主方向: , , (b)最大剪应变(c),(d) =0.023*0.25*0.25+0.009*0.58*0.58+0.013*0.775*0.775-0.015*0.25*0.58*2+0.0
17、01*0.25*0.775*2+0.008*0.58*0.775*2=0.0155 =0.023*0.25-0.015*0.58+0.001*0.775=-0.002175, =-0.015*0.25+0.009*0.58+0.008*0.775=0.00767 =0.001*0.25+0.008*0.58+0.013*0.775=0.014965 (e) (f) (g)由(a)得=0.000333,3.4 (周浩超、李松)证明:(a)oct=-31/2;(b) =.证明: (a)由(3.40)得:oct=1/2 展开得:oct=1/2 其中由于:,所以有: oct=1/2 (1) 又由:= 所以:=- 把该式带入(1)式得: oct=-31/2(b) 由公式(3.33)有: 所以:3= + =则:=-= (1)又由于 ,所以(1)式=又由(3.51)有 所以:= 3.5 (金晶、李云雷)对平面应变分量 计算主应变,主方向,最大剪应变,正应变分量和剪应变分量。此线元具有方向余弦 解:3.6(曾海斌)一物体指点的位移分量ui由函数分量给定 u1=10x1+3x2,u2=3x1+2x2,u3=6x3证明若
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《基础化学综合实验A》教学大纲
- 幼儿园0的意义课件
- 交通工程设施设计教案
- 玉溪师范学院《网络思想政治教育》2022-2023学年第一学期期末试卷
- 玉溪师范学院《商务谈判》2022-2023学年第一学期期末试卷
- 玉溪师范学院《篮球主项》2021-2022学年第一学期期末试卷
- 房地产营销策划 -雅安国际旅游度假区 2023-2024年度系列营销活动策划方案
- 2023年水路货物运输服务项目评估分析报告
- 2019湘美版 高中美术 选择性必修6 现代媒体艺术《第一单元 摄影》大单元整体教学设计2020课标
- 2024届河北省定州市全国统一招生高考押题卷数学试题(一)
- 车辆工程基础知识单选题100道及答案解析
- 2024-2030年中国天然蜂蜜市场竞争状况与盈利前景预测报告
- 文书模板-《企业防静电方案》
- 油气田开发工程车辆租赁合同
- 中国厨房电器行业消费态势及销售状况分析研究报告(2024-2030版)
- 2024年安徽省投资集团控股限公司社会招聘高频难、易错点练习500题附带答案详解
- 宋关福-构建地理空间AI技术底座创新空间智能软件技术
- 2007债券市场年度分析报告
- 赛力斯招聘在线测评题
- 2024年安全员A证理论考试1000题及答案
- 人教版2024新版八年级全一册信息技术第9课 互联协议仍沿用 教学设计
评论
0/150
提交评论