2016年普通高等学校招生全国统一考试理科数学(北京卷)_第1页
2016年普通高等学校招生全国统一考试理科数学(北京卷)_第2页
2016年普通高等学校招生全国统一考试理科数学(北京卷)_第3页
2016年普通高等学校招生全国统一考试理科数学(北京卷)_第4页
2016年普通高等学校招生全国统一考试理科数学(北京卷)_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2016年普通高等学校招生全国统一考试北京理科数学1.(2016北京,理1)已知集合a=x|x|<2,b=-1,0,1,2,3,则ab=()a.0,1b.0,1,2c.-1,0,1d.-1,0,1,2答案c由|x|<2,可知-2<x<2,即a=x|-2<x<2,故ab=-1,0,1,选c.2.(2016北京,理2)若x,y满足2x-y0,x+y3,x0,则2x+y的最大值为()a.0b.3c.4d.5答案c由不等式组可作出如图的可行域(阴影部分),将z=2x+y变形为y=-2x+z,这是斜率为-2,随z变化的一族平行直线,如图,可知当y=-2x+z经过点p时

2、,z取最大值.由2x-y=0,x+y=3,可得p点坐标为(1,2),故zmax=2×1+2=4.3.(2016北京,理3)执行如图所示的程序框图,若输入的a值为1,则输出的k值为()a.1b.2c.3d.4答案b由程序框图可知,输入a=1,则k=0,b=1;进入循环体,a=-12,a=b不成立,k=1,a=-2,a=b不成立,k=2,a=1,此时a=b=1,输出k,则k=2,故选b.4.(2016北京,理4)设a,b是向量,则“|a|=|b|”是“|a+b|=|a-b|”的()a.充分而不必要条件b.必要而不充分条件c.充分必要条件d.既不充分也不必要条件答案d由|a|=|b|无法得

3、到|a+b|=|a-b|,充分性不成立;由|a+b|=|a-b|,得a·b=0,也无法得到|a|=|b|,必要性不成立.故选d.5.(2016北京,理5)已知x,yr,且x>y>0,则()a.1x-1y>0b.sin x-sin y>0c.12x-12y<0d.ln x+ln y>0答案c由x>y>0,得1x<1y,即1x-1y<0,故选项a不正确;由x>y>0及正弦函数的单调性,可知sin x-sin y>0不一定成立,故选项b不正确;由0<12<1,x>y>0,可知12x<

4、12y,即12x-12y<0,故选项c正确;由x>y>0,得xy>0,xy不一定大于1,故ln x+ln y=ln xy>0不一定成立,故选项d不正确.故选c.6.(2016北京,理6)某三棱锥的三视图如图所示,则该三棱锥的体积为()a.16b.13c.12d.1答案a由三视图可得,三棱锥的直观图如图,则该三棱锥的体积v=13·12·1·1·1=16,故选a.7.(2016北京,理7)将函数y=sin2x-3图象上的点p4,t向左平移s(s>0)个单位长度得到点p'.若p'位于函数y=sin 2x的图象

5、上,则()a.t=12,s的最小值为6b.t=32,s的最小值为6c.t=12,s的最小值为3d.t=32,s的最小值为3答案a设p'(x,y).由题意得,t=sin2×4-3=12,且p'的纵坐标与p的纵坐标相同,即y=12.又p'在函数y=sin 2x的图象上,则sin 2x=12,故点p'的横坐标x=12+k或512+k(kz),由题意可得s的最小值为4-12=6.8.(2016北京,理8)袋中装有偶数个球,其中红球、黑球各占一半.甲、乙、丙是三个空盒.每次从袋中任意取出两个球,将其中一个球放入甲盒,如果这个球是红球,就将另一个球放入乙盒,否则就

6、放入丙盒.重复上述过程,直到袋中所有球都被放入盒中,则()a.乙盒中黑球不多于丙盒中黑球b.乙盒中红球与丙盒中黑球一样多c.乙盒中红球不多于丙盒中红球d.乙盒中黑球与丙盒中红球一样多答案b若乙盒中放入的是红球,则须保证抽到的两个均是红球;若乙盒中放入的是黑球,则须保证抽到的两个球是一红一黑,且红球放入甲盒;若丙盒中放入的是红球,则须保证抽到的两个球是一红一黑,且黑球放入甲盒;若丙盒中放入的是黑球,则须保证抽到的两个球都是黑球;又由于袋中有偶数个球,且红球、黑球各占一半,则每次从袋中任取两个球,抽到两个红球的次数与抽到两个黑球的次数一定是相等的,故乙盒中红球与丙盒中黑球一样多,选b.9.(201

7、6北京,理9)设ar,若复数(1+i)(a+i)在复平面内对应的点位于实轴上,则a=. 答案-1解析(1+i)(a+i)=a-1+(a+1)ir,a+1=0,即a=-1.10.(2016北京,理10)在(1-2x)6的展开式中,x2的系数为.(用数字作答) 答案60解析二项展开式的通项tr+1=c6r16-r·(-2x)r=(-2)rc6rxr,x2的系数为(-2)2c62=60.11.(2016北京,理11)在极坐标系中,直线cos -3sin -1=0与圆=2cos 交于a,b两点,则|ab|=.答案2 解析直线cos -3sin -1=0化为直角坐

8、标方程为x-3y-1=0,圆=2cos 化为直角坐标方程为(x-1)2+y2=1,可知圆心(1,0)在直线x-3y-1=0上,故|ab|=2.12.(2016北京,理12)已知an为等差数列,sn为其前n项和.若a1=6,a3+a5=0,则s6=. 答案6解析an是等差数列,a3+a5=2a4=0.a4=0.a4-a1=3d=-6.d=-2.s6=6a1+15d=6×6+15×(-2)=6.13.(2016北京,理13)双曲线x2a2-y2b2=1(a>0,b>0)的渐近线为正方形oabc的边oa,oc所在的直线,点b为该双曲线的焦点.若正方形oabc

9、的边长为2,则a=. 答案2解析四边形oabc是正方形,aob=45°,不妨设直线oa的方程即双曲线的一条渐近线的方程为y=x.ba=1,即a=b.又|ob|=22,c=22.a2+b2=c2,即a2+a2=(22)2,可得a=2.14.(2016北京,理14)设函数f(x)=x3-3x,xa,-2x,x>a.(1)若a=0,则f(x)的最大值为; (2)若f(x)无最大值,则实数a的取值范围是. 答案(1)2(2)(-,-1)解析令g(x)=x3-3x,(x)=-2x.由g'(x)=3x2-3=0,得x=±1.可判断当x=1时,

10、函数g(x)的极小值为-2;当x=-1时,函数g(x)的极大值为2,且g(x)与x轴的交点为(-3,0),(0,0),(3,0).又g(x)与(x)图象的交点为a(-1,2),o(0,0),b(1,-2),故可作出函数g(x)与(x)的大致图象如图所示.(1)当a=0时,f(x)=x3-3x,x0,-2x,x>0,可知f(x)的最大值是f(-1)=2;(2)由图象知,当a-1时,f(x)有最大值f(-1)=2;当a<-1时,有a3-3a<-2a,此时f(x)无最大值,a的取值范围是(-,-1).15.(2016北京,理15)在abc中,a2+c2=b2+2ac.(1)求b的大

11、小;(2)求2cos a+cos c的最大值.解(1)由余弦定理及题设得cos b=a2+c2-b22ac=2ac2ac=22.又因为0<b<,所以b=4.(2)由(1)知a+c=34.2cos a+cos c=2cos a+cos34-a=2cos a-22cos a+22sin a=22cos a+22sin a=cosa-4.因为0<a<34,所以当a=4时,2cos a+cos c取得最大值1.16.(2016北京,理16)a,b,c三个班共有100名学生,为调查他们的体育锻炼情况,通过分层抽样获得了部分学生一周的锻炼时间,数据如下表(单位:小时):a班66.5

12、77.58b班6789101112c班34.567.5910.51213.5(1)试估计c班的学生人数;(2)从a班和c班抽出的学生中,各随机选取一人,a班选出的人记为甲,c班选出的人记为乙.假设所有学生的锻炼时间相互独立,求该周甲的锻炼时间比乙的锻炼时间长的概率;(3)再从a,b,c三个班中各随机抽取一名学生,他们该周的锻炼时间分别是7,9,8.25(单位:小时),这3个新数据与表格中的数据构成的新样本的平均数记为1,表格中数据的平均数记为0,试判断0和1的大小.(结论不要求证明)解(1)由题意知,抽出的20名学生中,来自c班的学生有8名.根据分层抽样方法,c班的学生人数估计为100

13、5;820=40.(2)设事件ai为“甲是现有样本中a班的第i个人”,i=1,2,5,事件cj为“乙是现有样本中c班的第j个人”,j=1,2,8.由题意可知,p(ai)=15,i=1,2,5;p(cj)=18,j=1,2,8.p(aicj)=p(ai)p(cj)=15×18=140,i=1,2,5,j=1,2,8.设事件e为“该周甲的锻炼时间比乙的锻炼时间长”.由题意知,e=a1c1a1c2a2c1a2c2a2c3a3c1a3c2a3c3a4c1a4c2a4c3a5c1a5c2a5c3a5c4.因此p(e)=p(a1c1)+p(a1c2)+p(a2c1)+p(a2c2)+p(a2c3

14、)+p(a3c1)+p(a3c2)+p(a3c3)+p(a4c1)+p(a4c2)+p(a4c3)+p(a5c1)+p(a5c2)+p(a5c3)+p(a5c4)=15×140=38.(3)1<0.17.(2016北京,理17)如图,在四棱锥p-abcd中,平面pad平面abcd,papd,pa=pd,abad,ab=1,ad=2,ac=cd=5.(1)求证:pd平面pab;(2)求直线pb与平面pcd所成角的正弦值;(3)在棱pa上是否存在点m,使得bm平面pcd?若存在,求amap的值;若不存在,说明理由.解(1)因为平面pad平面abcd,abad,所以ab平面pad.所

15、以abpd.又因为papd,所以pd平面pab.(2)取ad的中点o,连接po,co.因为pa=pd,所以poad.又因为po平面pad,平面pad平面abcd,所以po平面abcd.因为co平面abcd,所以poco.因为ac=cd,所以coad.如图建立空间直角坐标系o-xyz.由题意得,a(0,1,0),b(1,1,0),c(2,0,0),d(0,-1,0),p(0,0,1).设平面pcd的法向量为n=(x,y,z),则n·pd=0,n·pc=0,即-y-z=0,2x-z=0.令z=2,则x=1,y=-2.所以n=(1,-2,2).又pb=(1,1,-1),所以cos

16、<n,pb>=n·pb|n|pb|=-33.所以直线pb与平面pcd所成角的正弦值为33.(3)设m是棱pa上一点,则存在0,1使得am=ap.因此点m(0,1-,),bm=(-1,-,).因为bm平面pcd,所以bm平面pcd当且仅当bm·n=0,即(-1,-,)·(1,-2,2)=0.解得=14.所以在棱pa上存在点m使得bm平面pcd,此时amap=14.18.(2016北京,理18)设函数f(x)=xea-x+bx,曲线y=f(x)在点(2,f(2)处的切线方程为y=(e-1)x+4.(1)求a,b的值;(2)求f(x)的单调区间.解(1)因为

17、f(x)=xea-x+bx,所以f'(x)=(1-x)ea-x+b.依题设,f(2)=2e+2,f'(2)=e-1,即2ea-2+2b=2e+2,-ea-2+b=e-1,解得a=2,b=e.(2)由(1)知f(x)=xe2-x+ex.由f'(x)=e2-x(1-x+ex-1)及e2-x>0知,f'(x)与1-x+ex-1同号.令g(x)=1-x+ex-1,则g'(x)=-1+ex-1.所以,当x(-,1)时,g'(x)<0,g(x)在区间(-,1)上单调递减;当x(1,+)时,g'(x)>0,g(x)在区间(1,+)上单

18、调递增.故g(1)=1是g(x)在区间(-,+)上的最小值,从而g(x)>0,x(-,+).综上可知,f'(x)>0,x(-,+).故f(x)的单调递增区间为(-,+).19.(2016北京,理19)已知椭圆c:x2a2+y2b2=1(a>b>0)的离心率为32,a(a,0),b(0,b),o(0,0),oab的面积为1.(1)求椭圆c的方程;(2)设p是椭圆c上一点,直线pa与y轴交于点m,直线pb与x轴交于点n,求证:|an|·|bm|为定值.解(1)由题意得ca=32,12ab=1,a2=b2+c2,解得a=2,b=1.所以椭圆c的方程为x24+

19、y2=1.(2)由(1)知,a(2,0),b(0,1).设p(x0,y0),则x02+4y02=4.当x00时,直线pa的方程为y=y0x0-2(x-2).令x=0,得ym=-2y0x0-2,从而|bm|=|1-ym|=1+2y0x0-2.直线pb的方程为y=y0-1x0x+1.令y=0,得xn=-x0y0-1,从而|an|=|2-xn|=2+x0y0-1.所以|an|·|bm|=2+x0y0-1·1+2y0x0-2=x02+4y02+4x0y0-4x0-8y0+4x0y0-x0-2y0+2=4x0y0-4x0-8y0+8x0y0-x0-2y0+2=4.当x0=0时,y0=-1,|bm|=2,|an|=2,所以|an|·|bm|=4.综上,|an|·|bm|为定值.20.(2016北京,理20)设数列a:a1,a2,an(n2).如果对小于n(2nn)的每个正整数k都有ak<

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论