版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、地铁 1 号线第 10 标段小半径曲线盾构施工方案编写:审核:审批:中铁十九集团地铁 1 号线土建工程 10 标项目经理部2011年 12月 4日目录1、工程概况12、盾构小半径曲线施工工艺12.1 工艺流程图12.2 盾构机的适用性12.3 隧道辅助措施22.4 推进轴线预偏设置22.5 盾构施工参数选择32.6 土体损失及二次注浆42.7 严格控制盾构纠偏量42.8 盾尾与管片间的间隙控制42.9 盾构纠偏及测量姿态调整52.10 监控量测及信息反馈73、重难点分析93.1 盾构机掘进时隧道轴线控制难度大,纠偏困难93.2 管片容易在水平分离作用下发生较大的移位,造成管片侵陷现象93.3
2、对地层扰动大,容易产生较大的地面沉降93.4 管片之间易发生错台,管片易产生开裂和破损103.5 漏水现象严重104、重难点解决方案104.1 纠偏与隧道轴线控制114.2 控制管片水平移动和侵限114.3 减小对地层的扰动,避免大的沉降124.4 尽量避免大的错台和破损124.5 减少漏水135、劳动力组织136、机具设备配置137、质量控制要点148、安全注意事项151、工程概况地铁 1 号线土建工程10 标一共包含一站三区间的施工任务。其中永丰路站太湖广场站区间包括1 个 R430m(400m)和一个 R430m 的平曲线,南禅寺站永丰路站区间到达段有 1 个 R350m( 360m)的
3、曲线,三阳广场站南禅寺站区间在三阳广场段是1个 R300m 的曲线。 10 标的曲线特点是转弯半径小、且大部分在( 6)层土中掘进且穿越大量的建筑物。盾构曲线掘进是施工控制的重点,为了保证有效的进行纠偏、保证隧道拼装质量(错台、碎裂、漏水) 、减小地面沉降,特制定本方案。2、盾构小半径曲线施工工艺2.1 工艺流程图工艺流程如图 2-1 所示施工准备盾初设盾构参数辅助措施管构片机轴管纵加选选线片向强择型预注设螺偏浆加栓设加劲复满足小半径曲置固肋紧线掘进要求掘 进优化盾构施工参数监测隧道(沉No降、位移、收小于基准敛)Yes小半径曲线施工完成图 2-1 小半径曲线施工工艺流程图2.2 盾构机的适用
4、性采用铰接式盾构进行施工。由于盾构增加了铰接部分,使盾构切口至支撑环,支撑环至盾尾都形成活体,增加了盾构的灵敏度,对隧道的轴线控制更加方便以及管片外弧碎裂和管片渗水等情况得以大大改善。适当的超挖量盾构大刀盘上安装有仿形刀,具有一定的超挖围。在曲线施工时可根据推进轴线情况进行部分超挖,超挖量越大,曲线施工越容易。但另一方面,超挖会使同步注浆浆液因土体的松动绕入开挖面, 加上曲线推进时反力下降的因素, 会产生隧道变形增大的问题。因此,超挖量最好控制在超挖围的最小限度。铰接角度满足要求盾构机增加铰接部分,使盾构切口至支撑环,支撑环至盾尾都形成活体,增加了盾构的灵敏度,可以在推进时减少超挖量的同时产生
5、推进分力,确保曲线施工的推进轴线控制。管片外弧碎裂和管片渗水等情况得以大大改善。铰接角度=(L1+ L2)× 180/× R 其中 L1、 L2 分别为铰接盾构的前体和后体,R 为曲线半径,为盾构机在小半径曲线上的铰接角度,此角度应小于盾构机自身的最大铰接角度。通过固定铰接千斤顶行程差来固定盾构机的铰接角度,从而使盾构机适应相应得曲线半径。铰接千斤顶行程差mm=千斤顶最大行程差×(左右铰接角度deg) /最大左右铰接角度deg。2.3 隧道辅助措施隧道管片壁后注浆加固隧道每掘进完成2 环,对脱出盾尾10 环的管片通过管片的拼装孔对土体进行二次压注加固 ,围为管片壁
6、后 2.4m。隧道设纵向加强肋针对小半径曲线上隧道纵向位移较大, 在隧道靠近开挖面后5060m 围管片设置加强肋以增强隧道纵向刚度, 控制其纵向位移。加强肋采用双拼 22a 槽钢用钢板焊接成型,用螺栓将其与管片的预留注浆孔进行连接,从而将隧道纵向连接起来,以加强隧道纵向刚度。加强螺栓复紧每环推进结束后,须拧紧当前环管片的连接螺栓,并在下环推进时进行复紧,克服作用于管片推力产生的垂直分力,减少成环隧道浮动。每掘进完成3 环,对 10 环以的管片连接螺栓复拧一次。2.4 推进轴线预偏设置在盾构掘进过程中,要加强对推进轴线的控制。曲线推进时盾构实际上应处于曲线的切线上,因此推进的关键是确保对盾构机姿
7、态的控制。由于盾构掘进过程的同步注浆及跟踪补注的双液浆效果不能根本上保证管片后土体的承载强度,管片在承受侧向压力后,将向弧线外侧偏移。为了确保隧道轴线最终偏差控制在规允许的围,盾构掘进时给隧道预留一定的偏移量。根据理论计算和相关施工实践经验的综合分析,同时需考虑掘进区域所处的地层情况,在小半经曲线隧道掘进过程中,将设置预偏量 2040mm。如图 2-2 所示,施工过对小半径段隧道偏移监测,适当调整预偏量。盾构推进中心线向曲线内侧预偏 20 40mm盾构机曲线设计中线图 2-2小半径曲线段盾构推进轴线预偏示意图2.5 盾构施工参数选择严格控制盾构的推进速度推进时速度应控制在12cm/min 。即
8、避免因推力过大而引起的侧向压力的增大,又减小盾构推进过程中对周围土体的扰动。严格控制盾构正面平衡压力盾构在穿越过程中须严格控制切口平衡土压力,使得盾构切口处的地层有微小的隆起量( 0.51mm)来平衡盾构背土时的地层沉降量。同时也必须严格控制与切口平衡压力有关的施工参数,如出土量、推进速度、总推力、实际土压力围绕设定土压力波动的差值等。防止过量超挖、欠挖,尽量减少平衡压力的波动。其波动值控制在0.02MPa以。严格控制同步注浆量和浆液质量由于曲线段推进增加了曲线推进引起的地层损失量及纠偏次数的增加导致了对土体的扰动的增加,因此在曲线段推进时应严格控制同步注浆量和浆液质量,在施工过程中采用推进和
9、注浆联动的方式,确保每环注浆总量到位,确保盾构推进每一箱土的过程中,浆液均匀合理地压注,确保浆液的配比符合质量标准。通过同步注浆及时充填建筑空隙,减少施工过程中的土体变形。 注浆未达到要求时盾构暂停推进,以防止土体变形。每环的压浆量一般为建筑空隙的120 180,为 2.54m3/环,采用厚浆,浆液稠度 12 14cm,泵送出口处的压力不大于0.5MPa 左右。具体压浆量和压浆点视压浆时的压力值和地层变形监测数据选定。根据施工中的变形监测情况,随时调整注浆参数,从而有效地控制轴线。2.6 土体损失及二次注浆由于设计轴线为小半径的圆滑曲线,而盾构是一条直线,故在实际推进过程中,实际掘进轴线必然为
10、一段段折线,且曲线外侧出土量又大。这样必然造成曲线外侧土体的损失,并存在施工空隙。因此在曲线段推进过程中在进行同步注浆的工程中须加强对曲线段外侧的压浆量,以填补施工空隙。每拼装两环即对后面两环管片进行复合早凝浆液二次压注,以加固隧道外侧土体,保证盾构顺利沿设计轴线推进。浆液配比采用:水泥:水玻璃 30 :1,水灰比为 0.6。二次注浆压力控制在 0.3Mpa 以下;注浆流量控制在 10 15L/min ,注浆量约 0.5m3/环。2.7 严格控制盾构纠偏量盾构的曲线推进实际上是处于曲线的切线上,推进的关键是确保对盾构的头部的控制,由于曲线推进盾构环环都在纠偏,须做到勤测勤纠,而每次的纠偏量应尽
11、量小,确保楔形块的环面始终处于曲率半径的径向竖直面。除了采用楔型管片,为控制管片的位移量,管片纠偏在适当时候采用楔形低压棉胶板,从而达到有效地控制轴线和地层变形的目的。盾构推进的纠偏量控制在23mm/m。针对每环的纠偏量,通过计算得出盾构机左右千斤顶的行程差,通过利用盾构机千斤顶的行程差来控制其纠偏量。同时,分析管片的选型,针对不同的管片需有不同的千斤顶行程差。2.8 盾尾与管片间的间隙控制小曲率半径段的管片拼装至关重要,而影响管片拼装质量的一个关键问题是管片与盾尾间的间隙。合理的周边间隙可以便于管片拼装,也便于盾构进行纠偏。1)施工中随时关注盾尾与管片间的间隙,一旦发现单边间隙偏小时,及时通
12、过盾构推进方向进行调整,使得四周间隙基本相同。2)在管片拼装时,应根据盾尾与管片间的间隙进行合理调整,使管片与盾尾间隙得以调整,便于下环管片的拼装,也便于在下环管片推进过程中盾构能够有足够的间隙进行纠偏。3)根据盾尾与管片间的间隙,合理选择楔型管片。小曲率半径段时,盾构机的盾尾与管片间间隙的变化主要体现在水平轴线两侧,管片转弯正常跟随盾构机,当盾构机转弯过快时,隧道外侧的盾尾间隙就相对较小;当管片因楔子量等原因超前于盾构机转弯时,隧道侧的盾尾间隙就相对较小。因此,当无法通过盾构推进和管片拼装来调整盾尾间隙时,可考虑采用楔型管片和直线型管片互换的方式来调整盾尾间隙。2.9 盾构纠偏及测量姿态调整
13、盾构及管片纠偏盾构掘进中,由下述方法保证盾构推进轨迹和隧道设计中心线的偏差在设计允许围。(1)采用调整盾构千斤顶的组合来实现纠偏盾构千斤顶按上、下、左、右四个扇形分布,推进千斤顶的油泵为变量泵,当盾构需要调整方向时,可通过比例阀调整四个区域的油压,来调节千斤顶的顶力。如盾构偏离设计轴线,而需纠偏时,可在偏离方向相反处,调低该区域千斤顶工作压力,造成两千斤顶的行程差,也可采用停开部分千斤顶获得行程差。但这样易造成衬砌部分区域受力不匀,使管片损坏。盾构纠偏时要使千斤顶各区域压力分布呈线性状态,如盾构要向右纠,除左区要较右区有一个较大的压力差外,上、下区域的压力也要适当,一般可取左、右区域压力的平均
14、值。同理,如需上、下纠偏时,可造成上、下区域千斤顶的压力差。(2)采用微量楔形料进行隧道管片纠偏在曲线段采用管片环面上粘贴楔形低压石棉胶板的方法, 使直线段管片成为微量楔形轴线和设计轴线拟合。石棉橡胶板的压缩率为 12%,分段粘贴好的石棉橡胶板经推进过程中千斤顶压缩后,成一平整楔形环面。管片在制造中,会存在微小的误差(特别是环宽的误差) ,管片在拼装过程中也会产生误差,这些误差的积累和发展会导致盾构虽未偏离设计轴线,但盾尾的管片变得越来越难拼装,测量管片的偏差,会发现管片中心线已呈偏离设计轴线的趋势,采取以下预防措施:a、在每一环管片拼装时,测量上一环管片与盾构壳上、下、左、右各点的间隙,若各
15、点间隙均在1cm 以上,可视作管片轴线与盾构轴线拟合。 若测得某点间隙小于1cm,则可视作管片已开始偏离盾构轴线,此时可用微量石棉橡胶楔形料进行纠偏,将最大楔形量贴于间隙小处的衬面上。b、一次最大楔形量不得大于6mm,若超过 6mm,管片橡胶止水条的压缩量变小,会失去止水效果。所以在曲线段掘进时当安装楔形管片后仍需粘贴纠偏条时,应分数环粘贴,不应一环粘贴过厚。c、若最大楔形量为6mm(经压缩后为 5.28mm)。测得管片与盾构的偏差斜率后,即可算得纠偏的环数。盾构测量与姿态控制盾构机的测量是确保隧道轴线的根本,在小曲率半径段是盾构机的测量极为重要。在小曲率段推进时,应适当增加隧道测量的频率,通
16、过多次测量来确保盾构测量数据的准确性。同时,可以通过测量数据来反馈盾构机的推进和纠偏。在施工时,如有必要可以实施跟踪测量,促使盾构机形成良好的姿态。由于隧道转弯曲率半径小,隧道的通视条件相对较差,因此必须多次设置新的测量点和后视点。在设置新的测量点后,应严格加以复测,确保测量点的准确性,防止造成误测。同时,由于盾构机转弯的侧向分力较大,可能造成成环隧道的水平位移,所以必须定期复测后视点,保证其准确性。由于线路的急转弯,间距2030 环布置测量吊篮,每推进5 环复测一次导线点。盾构机推进采用自动测量系统,推进时每2-3min 自动测量一次盾构姿态。盾构机拼装后,应进行盾构纵向轴线和径向轴线测量,
17、其主要测量容包括刀口、机头与机尾连接中心、盾尾之间的长度测量;盾构外壳长度测量;盾构刀口、盾尾和支承环的直径测量。盾构机掘进时姿态测量应包括其与线路中线的平面偏离、高程偏离、纵向坡度、横向旋转和切口里程的测量,各项测量误差满足下表2-1 要求:表 2-1 测量误差表测量项目测量误差测量项目测量误差平面、高程偏离值( mm)±5纵向坡度( )±1里程偏离值( mm)±5切口里程( mm)±10横向旋转角( ")±3以盾构中心轴线作为X 轴、垂直于轴线方向为Y 轴、 Z 轴即为高程方向,刀盘中心作为坐标圆点。在刀盘后面固定螺杆盾构姿态的测
18、量前点。利用激光站支架置镜在盾构主机支架上设一个支导线点、然后置镜支导线点后视激光站导线点测出A、B、C 三点的坐标。因为A 、B、C 三点相对于 O1O 坐标轴有固定关系,根据A 、B、 C 三点的实测坐标利用三维坐标转换关系就能定出O1O 的实际位置及刀盘中心O 的坐标,利用O 点的实测坐标就能计算出盾构的实际里程以及前后参考点的俯仰情况,根据A 、C 两点的理论高差和实测高差计算出盾构的具体旋转情况,根据姿态的实测通过调整千斤顶和注浆压力来对盾构进行纠偏以达到盾构能按预定位置掘进。盾构姿态测量示意如图2-3 所示固定的螺杆(X,Y,Z)BAC(X,Y,Z)(X,Y,Z)O坐标圆点(前参考
19、点)O1盾尾后参考点图 2盾构姿态测量示意图-3盾构姿态测量示意图2.10 监控量测及信息反馈施工监测容针对该区间隧道沿线的建(构)筑物及地下管线设施,结合盾构推进施工中引起地面沉降的机理采用如下监测容:(1)地表环境沉降监测地表沉降地下管线沉降建(构)筑物沉降(2)在建隧道沉降监测施工监测围及点位布置(1)地表沉降点布设建立地面沉降监测网, 即在现场布置平行于隧道轴线的沉降监测点和垂直于隧道轴线的沉降监测点。平行于隧道轴线的沉降监测点设置为:每5.0m布设一点,垂直于隧道轴线的沉降监测点设置为:进出洞100m 围每20.0m 一个断面,其余部位30.0m 一个断面。平行于隧道轴线的地面监测点
20、主要用于观测盾构施工时对地面的影响程度; 垂直于隧道轴线的地面监测点主要用于观测盾构施工时对地面的影响围。盾构施工的监测围一般为盾构前 20 环,后 30 环。对围以外 30 100 环的测点每周复测一次,对 100 环外所有新完成区间监测点每月观测一次。在整个区间隧道施工完成后对该区间地表轴线点再测量一次看后期变化量。(2)地下管线沉降施工前与各种管线单位联系,摸清地下管线的准确位置,并将管线落到具体的布点图上,按管线单位要求进行监测点的埋设,并做好监测点的保护工作。同时加强沿线巡视,并把监测信息及时反馈给各管线单位。本着即能全面掌握信息,又要经济安全地完成整个隧道工程的原则,对常规管线的监
21、测利用地表沉降监测网。但为了更直接地了解盾构施工对管线的影响程度,对轴线两侧各 5 米围各种管线的设备点(如阀门井、抽气井、人孔、窨井等)进行直接监测,在管线单位的监控下确保管线的安全,并控制管线的沉降在容许的围。(3)建筑物沉降对盾构推进切口附近方圆20m 涉及的建筑物进行监测。(4)隧道沉降监测沿着隧道推进方向在隧道的管壁上布设沉降监测点,在进、出洞50 环围,每隔5环布设一点,在其他部位每隔10 环布一沉降监测点。每次监测围为新施工区段100 环,前期已完成区段100 环。监测技术要求及监测频率(1)监测精度在监测工作中,监测精度应满足以下要求:沉降位移监测误差 0.5 mm;(2)监测
22、频率监测工作自始至终要与施工进度相结合,监测频率与施工工况相一致,应根据施工的不同阶段,对影响围的监测对象,合理安排施工监测频率:(3)地面沉降、管线沉降:在区间隧道盾构出洞前布设监测点,测 2 3 次,取得稳定的测试数据, 在盾构出洞后即开始监测, 在盾构推进期间正常情况下 2 次/天,施工区域 30100 米以远的已完成区段 1 次 /周, 1 个月后且沉降速率小于 3mm/周监测频率可根据工程需要随时调整,以满足保护环境的要求。(4)建筑物沉降:监测频率23 次 /天,及时了解建筑物的变化情况,在盾构穿越危房时要增加监测频率,根据沉降量及沉降速率及时调整监测频率,保证监测信息准确及时。(
23、5)隧道(环片)沉降:测试频率为:离推进面20m 围之时, 1 次/天;离推进面20m 至 50m 围时, 1 次/2 天;离推进距离大于50m 围时, 1 次/周;隧道贯通后 1 次/月,沉降稳定后改为1 次/2 个月,直至验收;监测资料的分析、处理及资料报送(1)监测测量结果在测量工作结束后2 小时提供,出现险情时,及时提供监测数据。(2)监测资料每日以报表形式提交,报表要对应工况,工况要以图表反映,说明施工时间及相应施工参数。这样有利于对监测报表进行综合分析,提高报表的实用性和可靠性。(3)每周提交有数据、有分析、有结论(沉降变化曲线)的周报小结;(4)全部工程结束后一个月,提交监测总结
24、报告。3、重难点分析3.1 盾构机掘进时隧道轴线控制难度大,纠偏困难盾构机体本身为直线形缸体,不能与曲线完全拟合。曲线径越小纠偏量越大,纠偏灵敏度越低,轴线就比较难控制。并且由于转弯关系,左右侧油缸需要形成一个很大的推理差才能满足转弯推进要求,一次这就造成左右两侧油缸推力可调围很小,从而可用于调整姿态的油缸推理调整量很小,这也同样加大了对到控制喝酒片的难度。曲线上盾构机掘进过程中所穿越的孔洞将不再是理论上的圆形(实际为椭圆形),需要配套使用超挖刀装置进行超挖。3.2 管片容易在水平分离作用下发生较大的移位,造成管片侵陷现象隧道采用 1.5m 宽度的管片。比小宽度管片在此工程中的施工难度加大了许
25、多。隧道管片衬砌轴线因推进水平分力而向圆曲线外侧(背向圆心一侧)偏移,。在小半径曲线隧道中盾构机每掘进一环,由于管片端面与该处轴线产生夹角,在千斤顶的推力作用下产生一个水平分力,使管环脱出盾尾后,受到侧向分力的影响而向曲线外侧偏移。3.3 对地层扰动大,容易产生较大的地面沉降由于纠偏时的超挖,对土体扰动增大而发生较大沉降。小曲线隧道的施工除了有直线段隧道施工的地层变形因素外,还有以下二个因素的影响:由于盾构机处于纠偏状态,超挖刀也不断进行超挖掘进,开挖断面为一椭圆形,实际挖掘量超出理论挖掘量,增加了地层不稳定因素;由于纠偏量较大,对土体的扰动也大,地层损失量也增加,容易造成较长时间的后期沉降。
26、3.4 管片之间易发生错台,管片易产生开裂和破损管片存在一个水平方向的受力,不但会使整段隧道衬砌管片发生水平偏移(即前面所叙的侵限现象),还会导致管片之间发生相对位移,形成错台。由于管片的特殊受力状态,管片与管片之间存在着斜向应力,使得前方管片侧角和后方管片外侧角形成两个薄弱点如图 1,使得相当多的管片因此破裂。还有一个破裂原因就是因为相邻两环管片产生了相对位移,使得管片螺栓对其附近处混凝土产生剪切作用,使该处的混凝土开裂。图 1转弯处管片因斜向受力破损示意图3.5 漏水现象严重过小半径曲线段漏水现象严重的原因大致如下: 管片错台导致止水胶条衔接不紧密;拼装效果不好和止水胶条的破坏;管环外侧的
27、混凝土开裂(转弯段因盾尾间隙减小过多,使得管片被盾尾钢环刮坏) ,裂缝绕过止水胶条(如图 2)。图 2管片背后开裂导致漏水示意图4、重难点解决方案对于小半径转弯的难点, 主要是从盾构机掘进参数、 盾构设备(超挖刀、铰接装置)、管片选型和拼装等施工措施方面来解决, 特别是要采取了同步注浆和二次双液注浆相结合的措施,以保证小半径圆曲线段成型管片不出现侧向移动,以及及时填充围岩空隙保证土体稳定。下面对上叙难点逐一进行分析并探讨解决措施:4.1 纠偏与隧道轴线控制中盾和尾盾采用铰接连接, 有效地减少了盾构的长径, 使盾构在掘进时能灵活的进行姿态调整,顺利通过小半径转弯;盾构机转弯时通过的孔洞不是圆形,
28、 而是在原来的圆洞基础上两边扩挖而形成的椭圆形,超挖刀的设置正好满足了这个增大净空的要求;掌握好左右两侧油缸的推力差,尽量地减小整体推力,实现慢速急转;盾构机司机根据地质情况和线路走向趋势,使盾构机提前进入相应地预备姿态,减少之后的因不良姿态引起的纠偏。加密加勤 VMT 移站测量,避免由此产生的轴线误差。由于我们是将短距离的曲线看成是直线段来指导盾构机掘进,如果不短距离移站测量,则相当把长距离的弧线当作直线,故轴线偏差自然会相差很大。做好管片选型, 由于是选用的通用管片, 不存在转弯环与标准环的区别,所有每一环管片都是一样的。同时每一环管片可以调整的姿态最大为45mm。因此,这就需要我们实时对
29、盾尾间隙进行测量来确定KT 块的位置。从而有效保证使盾构姿态尽量与设计轴线的吻合。4.2 控制管片水平移动和侵限进入缓和曲线段时,将盾构机姿态往曲线侧(靠圆心侧)偏移1520cm,形成反向预偏移,这样可以抵消之后管片的往曲线外侧(背圆心侧)的偏移。由于我们开始推进便是从缓和曲线开始,因此提前做好转弯姿态准备是重中之重。这样可以保证我们在以后的掘进时能够轻松地控制盾构机走向。减小油缸推力。在强、中风化地层中小半径圆曲线掘进的过程中,对土体的扰动会显著降低外围土体的强度及自稳能力,土体具有的蠕变特性以及出现水平方向土体压力不均,管片在长时间承受千斤顶水平分力的等情况下,管片会向外侧整体移动。小半径
30、曲线掘进管片位移量可用公式表达:PTRT:盾构机推力的反作用力P:土体对管片侧面的附加应力R:转弯半径:变形系数由上式得知:当盾构机的推力越大时管片侧向位移也越大,当掘进的转弯半径越小时管片侧向位移也越大。同时,推进时根据我们火锦区间段的经验,可以把推力控制在900-1150t;在特殊地层时根据实际来及时调整推力。在管片偏移的方向额外进行注浆,达到一定的压力以抵抗管片的偏移。待浆液凝固后,则管片位置基本已经确定下来了。注浆的位置选择 1 点和 4 点手孔为宜(右转弯),这样不但可以抵抗管片水平偏移,还可以抵抗管片的上浮。4.3 减小对地层的扰动,避免大的沉降严格控制好姿态, 争取进行时时的细微
31、纠偏, 避免大的纠偏而造成对土体的扰动。利用 SLS-T 系统对盾构机姿态的实时监测显示,根据地层的软硬分布情况, 分区操作推进油缸,设定推力和推进速度,实现对盾构姿态的实时控制,必要时一个掘进循环可分几次完成。盾构机掘进时,总是在进行蛇行,难免出现姿态偏差,蛇行修正以长距离慢慢修正为原则,盾构机姿态调整(纠偏)方式有:a、滚动纠偏:采用刀盘反转的方法进行滚动纠偏。 b、竖直方向纠偏:盾构机抬头时,可加大上部千斤顶的推度进行纠偏;盾构机叩头时,可加大下部千斤顶的推度进行纠偏。c、水平方向纠偏:向左偏时,加大左侧千斤顶推度;向右偏时,加大右侧千斤顶推度。及时、充足地跟进同步注浆与二次注浆,将管片
32、与围岩间地空隙填充密实,达到稳固管片和减少地表沉降地效果。减小推力和掘进速度, 同时选择合适地土仓压力保持模式,最大限度地减小地层扰动,和保证掌子面的稳定,防止坍塌。4.4 尽量避免大的错台和破损油缸推力尽量不要太大,尤其时曲线外侧(背圆心侧)油缸,由于要加大推力来增加左右两侧油缸推力差,从而实现盾构机转弯。但是,在加大油缸推力的同时,一定要注意管片的承受能力,避免由此造成的管片破裂。由于曲线外侧油缸推力较大, 尤其要注意不要突然加力或者突然释放推力,这样也会造成管片的破裂。掘进的时候,把拧螺栓这道工序做到位,有效的防止错台的发生。提高管片拼装手的水平,避免因拼装不到位产生的错台。注意保持良好
33、的盾尾间隙状态,避免盾尾钢环刮坏管片。 调整好油缸撑靴的位置,尽量使撑靴完全作用在管片上。4.5 减少漏水减小错台,使止水胶条对接紧密,达到良好的止水效果。拧紧螺栓,压紧止水胶条。检查止水胶条,保证其完整、牢固。拼装前,用水清洗止水胶条,避免因止水胶条之间挤有杂物而影响止水效果。注意保持好盾尾间隙,避免盾尾钢环刮坏管片, 使裂隙绕过止水条而形成漏水。5、劳动力组织劳动力组织如表5-1 所示(单条隧道):表 5-1劳动力配置表盾构司机2/台起重工2电瓶车司机4电工3行车司机4焊工3盾构维修人员3防水工3测量工2注浆工6机修工3普工6合计416、机具设备配置主要设备如表 6-1 所示(单条隧道):表 6-1 主要设备配置表机械设备名称型号规格数量备注带有铰接装置和超土压平衡盾构机EPB63701 套挖刀龙门吊45t/16t1 台龙门吊电瓶机车碴土车运浆车直流充电机蓄电池组反力架移动始发托架砂浆搅拌机浆液搅拌系统通风机密封运碴车潜水泵电焊机7、质量控制要点16t35t818m35m3承受推力 80015
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度虚拟现实设备研发与委托生产合同
- 2024年度机械设备买卖合同样本
- 2024年度人力资源外包与招聘服务协议
- 2024年度物流园区建设与运营合同
- 2024年员工保密协议模板
- 2024年度自建房施工合同终止合同
- 2024年工程预付款资金监管协议
- 2024出版社与作者之间的出版合同
- 2024年度企业文化建设合作协议
- 2024年建筑企业与监理单位服务协议
- 中国女性生理健康白皮书
- 天然气巡检记录表
- 甲苯磺酸瑞马唑仑临床应用
- 民法典讲座-继承篇
- 外包施工单位入厂安全培训(通用)
- 糖尿病健康知识宣教课件
- 客户接触点管理课件
- Python语言学习通超星课后章节答案期末考试题库2023年
- 医学-心脏骤停急救培训-心脏骤停急救教学课件
- 高中英语-Book 1 Unit 4 Click for a friend教学课件设计
- 年产30万吨碳酸钙粉建设项目可行性研究报告
评论
0/150
提交评论