版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第4章机器人轨迹规划本章在操作臂运动学和动力学的基础上,讨论在关节空间和笛卡尔空间中机器人运动 的轨迹规划和轨迹生成方法。所谓轨迹,是指操作臂在运动过程中的位移、速度和加速度。 而轨迹规划是根据作业任务的要求,计算出预期的运动轨迹。首先对机器人的任务,运动 路径和轨迹进行描述,轨迹规划器可使编程手续简化,只要求用户输入有关路径和轨迹的 若干约束和简单描述,而复杂的细节问题则由规划器解决。例如,用户只需给出手部的目 标位姿,让规划器确定到达该目标的路径点、持续时间、运动速度等轨迹参数。并且,在 计算机内部描述所要求的轨迹,即选择习惯规定及合理的软件数据结构。最后,对内部描 述的轨迹、实时计算机器
2、人运动的位移、速度和加速度,生成运动轨迹。4.1机器人轨迹规划概述一、机器人轨迹的概念机器人轨迹泛指工业机器人在运动过程中的运动轨迹,即运动点的位移、速度和加速 度。机器人在作业空间要完成给定的任务,其手部运动必须按一定的轨迹(trajectory)进行。轨迹的生成一般是先给定轨迹上的若干个点,将其经运动学反解映射到关节空间,对关节 空间中的相应点建立运动方程,然后按这些运动方程对关节进行插值,从而实现作业空间 的运动要求,这一过程通常称为轨迹规划。工业机器人轨迹规划属于机器人低层规划,基本上不涉及人工智能的问题,本章仅讨论在关节空间或笛卡尔空间中工业机器人运动的轨 迹规划和轨迹生成方法。机器
3、人运动轨迹的描述一般是对其手部位姿的描述,此位姿值可与关节变量相互转换。 控制轨迹也就是按时间控制手部或工具中心走过的空间路径。二、轨迹规划的一般性问题通常将操作臂的运动看作是工具坐标系 T相对于工件坐标系 S的一系列运动。这种描述方法既适用于各种操作臂,也适用于同一操作臂上装夹的各种工具。对于移动工作台(例如传送带),这种方法同样适用。这时,工作坐标 S 位姿随时间而变化。例如,图 4.1所示将销插入工件孔中的作业可以借助工具坐标系的一系列位姿图4.1机器人将销插入工件孔中的作业描述Pi(i=1, 2,,n)来描述。这种描述方法不仅符合机器人用户考虑问题的思路,而且有利于 描述和生成机器人的
4、运动轨迹。用工具坐标系相对于工件坐标系的运动来描述作业路径是一种通用的作业描述方法。 它把作业路径描述与具体的机器人、手爪或工具分离开来,形成了模型化的作业描述方法, 从而使这种描述既适用于不同的机器人,也适用于在同一机器人上装夹不同规格的工具。 在轨迹规划中,为叙述方便,也常用点来表示机器人的状态,或用它来表示工具坐标系的 位姿,例如起始点、终止点就分别表示工具坐标系的起始位姿及终止位姿。对点位作业(pick and place operation)的机器人(如用于上、下料),需要描述它的起始状 态和目标状态,即工具坐标系的起始值 TO。目标值Tf。在此,用“点”这个词表示工具 坐标系的位置
5、和姿态(简称位姿),例如起始点和目标点等。对于另外一些作业,如弧焊和曲面加工等,不仅要规定操作臂的起始点和终止点,而且要指明两点之间的若干中间点(称路径点),必须沿特定的路径运动(路径约束)。这类称为连续路径运动(continuous Path motion)或轮廓运动(contour motion),而前者称点到点运动 (PTP = pointtopoint motion)。在规划机器人的运动时.还需要弄清楚在其路径上是否存在障碍物(障碍约束)。路径约束和障碍约束的组合将机器人的规划与控制方式划分为四类、如表4-1所示。表4.1机器人的规划与控制方式障碍约束路径约束离线路径规划+在线路径跟踪
6、 位置控制离线无碰撞路径规则+在线路径跟踪 位置控制+在线障碍探测和避障路径纯束" 路径设定一軌述规勿IB -*|厂单 Q) , 0U )动力学约東本章主要讨论连续路径的无障碍的轨迹规划方法。轨迹规划器可形象地看成为一个黑箱(图4 2),其输入包括路径的“设定”和“约束”,输出的是操作臂末端手部的“位姿序列”,表示手部在各离散时刻的中间形位。操作臂最常用的轨迹规划方法有两种:第一种方法要求用户对于选定的轨迹结点(插值点)上的位姿、速度和加速度给出一组显式约束(例如连续性和光滑程度等 ),轨迹规划器从一类函数 (例如n次多项式)中选取参数化 轨迹,对结点进行插值,并满足约束条件。第二种
7、方法要求用户给出运动路径的解析式;如直角坐标空间中的直线路径,轨迹规 划器在关节空间或直角坐标空间中确定一条轨迹来逼近预定的路径。在第一种方法中,约束的设定和轨迹规划均在关节空间进行。由于对操作臂手部(直角坐标形位 )没有施加任何约束,用户很难弄清手部的实际路径,因此可能会发生与障碍物相 碰。第二种方法的路径约束是在直角坐标空间中给定的、而关节驱动器是在关节空间中受 控的。因此,为了得到与给定路径十分接近的轨迹,首先必须采用某种函数逼近的方法将 直角坐标路径约束转化为关节坐标路径约束,然后确定满足关节路径约束的参数化路径。轨迹规划既可在关节空间也可在直角空间中进行但是所规划的轨迹函数都必须连续
8、 和平滑,使得操作臂的运动平稳。 在关节空间进行规划时、是将关节变量表示成时间的函 数,并规划它的一阶和二阶时间导数; 在直角空间进行规划是指将手部位姿、速度和加速 度表示为时间的函数。而相应的关节位移、速度和加速度由手部的信息导出。通常通过运 动学反解得出关节位移、用逆稚可比求出关节速度,用逆雅可比及其导数求解关节加速度。用户根据作业给出各个路径结点后规划器的任务包含:解变换方程、进行运动学反 解和插值运算等;在关节空间进行规划时,大量工作是对关节变量的插值运算。下面讨论 关节轨迹的插值计算。三、轨迹的生成方式运动轨迹的描述或生成有以下几种方式:(1) 示教 -再现运动。这种运动由人手把手示
9、教机器人,定时记录各关节变量,得到沿 路径运动时各关节的位移时间函数q(t);再现时,按内存中记录的各点的值产生序列动作。(2) 关节空间运动。 这种运动直接在关节空间里进行。 由于动力学参数及其极限值直接 在关节空间里描述,所以用这种方式求最短时间运动很方便。(3) 空间直线运动。这是一种直角空间里的运动,它便于描述空间操作,计算量小,适 宜简单的作业。(4) 空间曲线运动。这是一种在描述空间中用明确的函数表达的运动,如圆周运动、螺 旋运动等。四、轨迹规划涉及的主要问题 为了描述一个完整的作业,往往需要将上述运动进行组合。通常这种规划涉及到以下 几方面的问题:(1) 对工作对象及作业进行描述
10、,用示教方法给出轨迹上的若干个结点(knot)。(2) 用一条轨迹通过或逼近结点, 此轨迹可按一定的原则优化, 如加速度平滑得到直角空间的位移时间函数 X(t)或关节空间的位移时间函数q(t);在结点之间如何进行插补,即根据轨迹表达式在每一个采样周期实时计算轨迹上点的位姿和各关节变量值。(3) 以上生成的轨迹是机器人位置控制的给定值, 可以据此并根据机器人的动态参数设 计一定的控制规律。(4) 规划机器人的运动轨迹时, 尚需明确其路径上是否存在障碍约束的组合。 一般将机 器人的规划与控制方式分为四种情况,如表 4.1 所示。4.2插补方式分类与轨迹控制一、插补方式分类点位控制(PTP控制)通常
11、没有路径约束,多以关节坐标运动表示。点位控制只要求满足 起终点位姿,在轨迹中间只有关节的几何限制、最大速度和加速度约束;为了保证运动的连 续性,要求速度连续,各轴协调。连续轨迹控制(CP控制)有路径约束,因此要对路径进行设计。路径控制与插补方式分类如表 4.2所示。表4.2路径控制与插补方式分类路径控制不插补关节插补(平滑)空间插补点位控制PTP(1) 各轴独立快速到达。(2) 各关节最大加速度 限制(1) 各轴协调运动定时插补。(2) 各关节最大加速度限制连续路径控制CP(1) 在空间插补点间进行关 节定时插补。(2) 用关节的低阶多项式拟合 空间直线使各轴协调运动。(3) 各关节最大加速度
12、限制(1) 直线、圆弧、 曲线等距插补。(2) 起停线速 度、线加速度给 定,各关节速度、 加速度限制、机器人轨迹控制过程机器人的基本操作方式是示教 -再现,即首先教机器人如何做, 机器人记住了这个过程, 于是它可以根据需要重复这个动作。操作过程中,不可能把空间轨迹的所有点都示教一遍 使机器人记住,这样太繁琐,也浪费很多计算机内存。实际上,对于有规律的轨迹,仅示 教几个特征点,计算机就能利用插补算法获得中间点的坐标,如直线需要示教两点,圆弧 需要示教三点,通过机器人逆向运动学算法由这些点的坐标求出机器人各关节的位置和角 度(1,n),然后由后面的角位置闭环控制系统实现要求的轨迹上的一点。继续插
13、补并重 复上述过程,从而实现要求的轨迹。机器人轨迹控制过程如图 4.3所示。图4.3机器人轨迹控制过程4.3机器人轨迹插值计算给出各个路径结点后,轨迹规划的任务包含解变换方程,进行运动学反解和插值计算。 在关节空间进行规划时,需进行的大量工作是对关节变量的插值计算。一、直线插补直线插补和圆弧插补是机器人系统中的基本插补算法。对于非直线和圆弧轨迹,可以 采用直线或圆弧逼近,以实现这些轨迹。空间直线插补是在已知该直线始末两点的位置和姿态的条件下,求各轨迹中间点(插补点)的位置和姿态。由于在大多数情况下,机器人沿直线运动时其姿态不变,所以无姿态插 补,即保持第一个示教点时的姿态。当然在有些情况下要求
14、变化姿态,这就需要姿态插补,可仿照下面介绍的位置插补原理处理,也可参照圆弧的姿态插补方法解决,如图 4.4所示。已知直线始末两点的坐 标值 Po(Xo, YO, ZO)、Pe(Xe,Ye, Ze)及姿态,其中 Po、Pe 是相对于基坐标系的位置。这些已知的位置和姿态通常是通过示教方式得到的。设 V为要求的沿直线运动的速度; ts为插补时间间隔。为减少实时计算量,示教完成后,可求出: 2 22"L '、.: Xe XoYe YoZe Zo .ts间隔内行程d = Vts;插补总步数N为L/d+1的整数部分;各轴增量X Xe Xo /NY Ye Yo /NZ Ze Zo /N各插
15、补点坐标值Xi 1 Xi i XYi i Y i 丫 乙 1 Zi i Z式中:i=o, 1, 2,,、圆弧插补1平面圆弧插补平面圆弧是指圆弧平面与基坐标系的三大平面之一重合,以XOY平面圆弧为例。已知不在一条直线上的三点Pi、P2、P3及这三点对应的机器人手端的姿态,如图4.5及图4.6所设v为沿圆弧运动速度;ts为插补时时间隔。类似直线插补情况计算出:(1) 由Pi、P2、P3决定的圆弧半径 R。(2) 总的圆心角 =1+ 2,即卩2 2222 arccos (X3X2)Y3Y22R /2R(3) ts时间内角位移量带tsv/R,据图4.4所示的几何关系求各插补点坐标。(4) 总插补步数(
16、取整数)N = / 0+ 1对Pi+1点的坐标,有Xi 1 Rcos( i ) Rcos i cos Rsin i sin Xi cosYi sin式中:Xi=R cos 0; Yi=Rsin 0。同理有Yi 1Rsin( j ) Rsin j cos Rcos i sin Y cos Xi sin由0+1=0i +0可判断是否到插补终点。若0+1,则继续插补下去;当0+1时,贝U修正最后一步的步长0,并以 表示,i ,故平面圆弧位置插补为Xi 1 Xi cos Y sinYi 1 Y cos Xi sin 2 21 arccos (X2Xi)Y2Y12R /2R2. 空间圆弧插补空间圆弧是指
17、三维空间任一平面内的圆弧,此为空间一般平面的圆弧问题。 空间圆弧插补可分三步来处理:(1) 把三维问题转化成二维,找出圆弧所在平面。(2) 利用二维平面插补算法求出插补点坐标(Xi+i, Yi+i)。 把该点的坐标值转变为基础坐标系下的值,如图4.7所示。通过不在同一直线上的三点Pi、P2、P3可确定一个圆及三点间的圆弧,其圆心为Or,半径为R,圆弧所在平面与基础坐标系平面的交线分别为AB、BC、CA。建立圆弧平面插补坐标系,即把OrXrYrZr坐标系原点与圆心 Or重合,设OrXrYrZr平面为圆弧所在平面,且保持Zr为外法线方向。这样,一个三维问题就转化成平面问题,可以应用平面圆弧插补的结
18、论。求解两坐标系(图4.7)的转换矩阵。令Tr表示由圆弧坐标OrXrYrZr至基础坐标系OXoYoZo的转换矩阵。若Zr轴与基础坐标系 Zo轴的夹角为,Xr轴与基础坐标系的夹角为0,则可完成下述步骤:将XrYrZr的原点Or放到基础原点 0上;绕Zr轴转0使Xo与Xr平行;再绕 Xr轴转角,使Zo与Zr平行。这三步完成了 XrYrZr向XoYoZo的转换,故总转换矩阵应为cossin0XORcosYOR sinTR1sin coscos cossinXOR sincosYOR cos cosZOR sinsin sincos sincosXOR sinsinYOR cos sinZOR cos
19、0001OrXrYrZr坐标系,则要用到 T r的逆矩阵TRT(XOR,YOR,ZOR)R(Z,)R(X, )cossin cossin cosXORsincos coscos sinYOR0sincosZOR0001(4.1)式中: XOR、,Yor、Zor为圆心Or在基础坐标系下的坐标值。欲将基础坐标系的坐标值表示在三、定时插补与定距插补由上述可知,机器人实现一个空间轨迹的过程即是实现轨迹离散的过程,如果这些离 散点间隔很大,则机器人运动轨迹与要求轨迹可能有较大误差。只有这些插补得到的离散 点彼此距离很近, 才有可能使机器人轨迹以足够的精确度逼近要求的轨迹。 模拟 CP 控制实 际上是多次
20、执行插补点的 PTP 控制,插补点越密集,越能逼近要求的轨迹曲线。插补点要多么密集才能保证轨迹不失真和运动连续平滑呢?可采用定时插补和定距插 补方法来解决。1.定时插补从图 4.3 所示的轨迹控制过程知道, 每插补出一轨迹点的坐标值, 就要转换成相应的关 节角度值并加到位置伺服系统以实现这个位置,这个过程每隔一个时间间隔ts 完成一次。为保证运动的平稳,显然 ts不能太长。由于关节型机器人的机械结构大多属于开链式,刚度不高,ts一般不超过25 ms(40 Hz),这样就产生了 ts的上限值。当然ts越小越好,但它的下限值受到计算量限制,即对于机器人的控制,计算机要在 ts 时间里完成一次插补运
21、算和一次逆向运动学计算。对于目前的大多 数机器人控制器,完成这样一次计算约需几毫秒。这样产生了ts 的下限值。当然,应当选择ts接近或等于它的下限值,这样可保证较高的轨迹精度和平滑的运动过程。以一个 XOY 平面里的直线轨迹为例说明定时插补的方法。设机器人需要的运动轨迹为直线,运动速度为v(mm/s),时间间隔为ts (ms),则每个ts间隔内机器人应走过的距离为可见两个插补点之间的距离正比于要求的运动速度,两点之间的轨迹不受控制,只有 插补点之间的距离足够小,才能满足一定的轨迹精度要求。机器人控制系统易于实现定时插补,例如采用定时中断方式每隔ts 中断一次进行一次插补,计算一次逆向运动学,输
22、出一次给定值。由于 ts 仅为几毫秒,机器人沿着要求轨迹 的速度一般不会很高,且机器人总的运动精度不如数控机床、加工中心高,故大多数工业 机器人采用定时插补方式。当要求以更高的精度实现运动轨迹时,可采用定距插补。2.定距插补由式 (4.2)可知 v 是要求的运动速度,它不能变化,如果要两插补点的距离PiPi+1 恒为一个足够小的值,以保证轨迹精度,ts就要变化。也就是在此方式下,插补点距离不变,但ts要随着不同工作速度 v 的变化而变化。这两种插补方式的基本算法相同,只是前者固定ts,易于实现,后者保证轨迹插补精度, 但ts要随之变化,实现起来比前者困难。四、关节空间插补如上所述, 路径点 (
23、结点 )通常用工具坐标系以相对于工作坐标系位姿来表示。为了求得在关节空间形成所要求的轨迹,首先用运动学反解将路径点转换成关节矢量角度值,然后 对每个关节拟合一个光滑函数,使之从起始点开始,依次通过所有路径点,最后到达目标 点。对于每一段路径,各个关节运动时间均相同,这样保证所有关节同时到达路径点和终 止点,从而得到工具坐标系应有的位置和姿态。但是,尽管每个关节在同一段路径中的运 动时间相同,各个关节函数之间却是相互独立的。总之,关节空间法是以关节角度的函数来描述机器人的轨迹的,关节空间法不必在直 角坐标系中描述两个路径点之间的路径形状,计算简单、容易。再者,由于关节空间与直 角坐标空间之间并不
24、是连续的对应关系,因而不会发生机构的奇异性问题。在关节空间中进行轨迹规划,需要给定机器人在起始点、终止点手臂的形位。对关节 进行插值时,应满足一系列约束条件,例如抓取物体时,手部运动方向(初始点 ) ,提升物体离开的方向 (提升点 ),放下物体 (下放点 )和停止点等结点上的位姿、速度和加速度的要求; 与此相应的各个关节位移、速度、加速度在整个时间间隔内连续性要求;其极值必须在各 个关节变量的容许范围之内等。在满足所要求的约束条件下,可以选取不同类型的关节插 值函数生成不同的轨迹。本节着重讨论关节轨迹的插值方法“1.三次多项式插值在操作臂运动的过程中,由于相应于起始点的关节角度0 是已知的而终
25、止点的关节角f可以通过运动学反解得到,因此,运动轨迹的描述,可用起始点关节角与终止点关节角 度的一个平滑插值函数(t)来表示。在to=0时刻的值是起始关节角度0,终端时刻tf的值是终止关节角度为实现单个关节的平稳运动,轨迹函数(t)至少需要满足四个约束条件,即两端点位置约束和两端点速度约束。端点位置约束是指起始位姿和终止位姿分别所对应的关节角度。(t)在时刻to=0时的值是起始关节角度 0,在终端时刻tf时的值是终止关节角度f,即tff为满足关节运动速度的连续性要求,两外还有两个约束条件,即在起始点和终止点的 关节速度要求。在但前的情况下,可简单地设定为零,即&0 0&tf0上
26、面给出的四个约束条件可以惟一地确定一个三次多项式t a。 ait a2t2 a3t3运动过程中的关节速度和加速度则为&t a1 2a2t 3a3t2为求得三次多项式的系数&2a2 6a3ta0,ai,a2和a3,代以给定的约束条件,有方程组f a 0aitfa2tf2-3a3tf0a10 ai 2a?tf3a3tf(4.7)求解该方程组,可得0aoa3a22t"2a33tfo(4.8)对于起始速度及终止速度为零的关节运动,满足连续平稳运动要求的三次多项式插值 函数为3(t) o ( ftf2o)t2!( ftf3o)t3(4.9)由式(4.9)可得关节角速度和角加速度
27、的表达式为&t)令 ftf&&t)4( f tf6o)t 3 ( ftf12o)( ftfo)t2o)t(4.io)三次多项式插值的关节运动轨迹曲线如图4.8所示。由图可知,其速度曲线为抛物线,相应的加速度曲线为直线。这里再次指出:这组解只适用于关节起始、终止速度为零的运动情况。对于其他情况,后面另行讨论。图4.8三次多项式插值的关节运动轨迹例4.1设有一台具有转动关节的机器人,其在执行一项作业时关节运动历时2 s。根据需要,其上某一关节必须运动平稳,并具有如下作业状态:初始时,关节静止不动,位置 0o=o ° ;运动结束时0f=9o ° ,此时关节
28、速度为 o。试根据上述要求规划该关节的运动。解根据要求,可以对该关节采用三次多项式插值函数来规划其运动。已知9o=o ° Of=9o ° , tf =2 s,代入式(4.8)可得三次多项式的系数ao=o.o, ai =o.o, a2=22.5, a3 = -67.5由式(4.5)和式(4.6)可确定该关节的运动轨迹,即t 22.5t267.5t3&t45.0 t 202. 5 t2&&t45 405.0 t2.过路径点的三次多项式插值一般情况下要求规划过路径点的轨迹。如图4.9所示,机器人作业除在 A、B点有位姿要求外,在路径点C、D也有位姿要求。对
29、于这种情况,假如末端执行器在路径点停留, 即各路径点上速度为 0,则轨迹规划可连续直接使用前面介绍的三次多项式插值方法;但若末端执行器只是经过,并不停留,就需要将前述方法推广。实际上,可以把所有路径点也看作是“起始点”或“终止点”,求解逆运动学,得到相应的关节矢量值。然后确定所要求的三次多项式插值函数,把路径点平滑地连接起来。但 是,在这些“起始点”和“终止点“的关节运动速度不再是零。设路径点上的关节速度已知,在某段路径上,起始点为0)和&,终止点为Q和&,这时,确定三次多项式系数的方法与前所述完全一致,只是速度约束条件变为&0 &&tf&(4.
30、11)图4.9机器人作业路径点利用约束条件确定三次多项式系数,有下列方程组0a。f a0 aitf& aia2tf2& ai 2a?tf 3ast;(4.12)求解方程组,得ai(i0,1,2,3)为 a。a1a2a3tf2f&tf&tf2(4.13)实际上,由上式确定的三次多项式描述了起始点和终止点具有任意给定位置和速度的& &运动轨迹,是式的推广。当路径点上的关节速度为0,即卩0= f =0时,式(4.13)与式(4.8)完全相同,这就说明了由式(4.13)确定的三次多项式描述了起始点和终止点具有任意给定位置和速度约束条件的运动轨迹。剩下的问
31、题就是 如何来确定路径点上的关节速度,可由以下三种方法规定:(1) 根据工具坐标系在直角坐标空间中的瞬时线速度和角速度来确定每个路径点的关 节速度。对于方法(1),利用操作臂在此路径点上的逆雅可比,把该点的直角坐标速度"映射” 为所要求的关节速度。当然,如果操作臂的某个路径点是奇异点,这时就不能任意设置速 度值。按照方法(1)生成的轨迹虽然能满足用户设置速度的需要,但是逐点设置速度毕竟要或的功能,或者二者兼而耗费很大的工作量。因此。机器人的控制系统最好具有方法 有之。由控制系统自动地选择路径(2)在直角坐标空间或关节空间中采用适当的启发式方法, 点的速度。对于方法(2)系统采用某种启
32、发式方法自动选取合适的路径点速度。图45表示一种启发式选择路径点速度的方式。图中(0为起始点;0D为终止点,0A, 0B和0C是路径点,用细实线表示过路径点时的关节运动速度。这里所用的启发式信息从概念到计算方法都很简单, 即,假设用宣线段把这些路径点依次连接起来,如果相邻线段的斜率在路径点处改变将号, 则把速度选定为零;如果相邻线段不改变符号,则选取路径点两例的线段斜率的平均值作 为该点的速度。因此,根据规定的路径点,系统就能够按此规则自动生成相应的路径点速 度。8tn图6弋路径点上連度的自动生成(3)为了保证每个路径点上的加速度连续,由控制系统按此要求自动地选择路径点的速度。对于方法(3),
33、为了保证路径点处的加速度连续,可以设法用两条三次曲线在路径点处按一定规则联接起来,拼凑成所要求的轨迹。其约束条件是:联接处不仅速度连续,而且 加速度也连续,下面具体地说明这种方法。设所经过的路径点处的关节角度为0v,与该点相邻的前后两点的关节角分别为00和0)0设其路径点处的关节加速度连续。如果路径点用三次多项式连接,试确定多项式的所有系 数。该机器人路径可分为0到v段及v到g段两段,可通过由两个三次多项式组成的样条函数连接。设从1 tai0ai1t0到V的三次多项式插值函数为Mt2ai3t3而从v到g的三次多项式插值函数为上述两个三次多项式的时间区间分别是0,tfi和0,tf2,若要保证路径
34、点处的速度及加速度均连续,即存在下列约束条件& tfi&(0)1 tfi2(0)上述约束条件组成含有根据约束条件建立的方程组为0ai0vai0aiitfiai2tfiai3tfiv屉ga 20a2itf 2a22tf2a23tf 20Qi0a2i2a22tf23a23t2 f 2ai122ai2tfi3ai3tfia212ai26ai3tfi2a228个未知数的8个线性方程。对于tfi=tf2=tf的情况,这个方程组的解为ai00aii0a20a2i4tfa223g 3。2tf2a23在更一般的情况下,包含许多路径点的机器人轨迹可用多个三次多项式表示。包括各 路径点处加速度连续
35、的约束条件构成的方程组能表示成矩阵的形式,由于系数矩阵是三角 阵,路径点的速度易于求出。3. 高阶多项式插值若对于运动轨迹的要求更为严格,约束条件增多,三次多项式就不能满足需要,须用 更高阶的多项式对运动轨迹的路径段进行插值。例如,对某段路径的起始点和终止点都规定了关节的位置、速度和加速度,则要用一 个五次多项式进行插值,即taa1ta2t2a3it3 a4t4a5t5(4.14)多项式的.系数ao,ai,as必须满足6个约束条件0a0fa oaitfa2tfa3tfa4tfastf&0ai&fai2a?tf3af 4a4t; 5ast:&2a2&2a26a;3
36、tf 12a4tf20astf(4.15)4. 用抛物线过渡的线性插值在关节空间轨迹规划中,对于给定起始点和终止点的情况选择线性函数插值较为简单,如图4.10所示。然而,单纯线性插值会导致起始点和终止点的关节运动速度不连续,且加 速度无穷大,显然,在两端点会造成刚性冲击。如图为此应对线性函数插值方案进行修正,在线性插值两端点的邻域内设置一段抛物线形 缓冲区段。由于抛物线函数对于时间的二阶导数为常数,即相应区段内的加速度恒定,这 样保证起始点和终止点的速度平滑过渡,从而使整个轨迹上的位置和速度连续。线性函数 与两段抛物线函数平滑地衔接在一起形成的轨迹称为带有抛物线过渡域的线性轨迹4.11所示。为
37、了构造这段运动轨迹,假设两端的抛物线轨迹具有相 同的持续时间ta,具有大小相同而符号相反的恒加速度 对于这种路径规划存在有多个解,其轨迹不惟一。如图 所示。但是,每条路径都对称于时间中点th和位置中点要保证路径轨迹的连续、光滑,即要求抛物线轨迹的终 点速度必须等于线性段的速度,故有下列关系&&o4.12ho&h_aa t tth ta (4.16)式中:a为对应于抛物线持续时间ta的关节角度。a的值可以按式(4.17)求出:_!&t2a 0a2(4.17)设关节从起始点到终止点的总运动时间为tf,则tf = 2th,并注意到h 1( 0 f )2(4.18)则由
38、式(4.16)至(4.18)得 笔辱仏f 00(4.佝一般情况下,0、f、tf是已知条件,这样,据式(4.16)可以选择相应的 晦口 ta ,得到相应的轨迹。通常的做法是先选定加速度&的值,然后按式(4.19)求出相应的ta:0、taf o2&&(4.20)由式(4.20)可知,为保证ta有解,加速度值 &必、须选得足够大,即4 f 0tf(4.21)当式(4.21)中的等号成立时,轨迹线性段的长度缩减为零, 整个轨迹由两个过渡域组成, 这两个过渡域在衔接处的斜率 (关节速度)相等;加速度&的取值愈大,过渡域的长度会变得 愈短,若加速度趋于无穷大,轨迹又
39、复归到简单的线性插值情况。例4.3。、 f和tf的定义同例4.1,若将已知条件改为60=15° , Of =75 °tf =3 s,试设计两条带有抛物线过渡的线性轨迹。解1)设计第一条轨迹对&&0、根据题意1422 324 叱 15)o.59s2 42用式(4.17)和件佝计算过渡域终了时的关节位置al和关节速度&,得(241 2 ooa1 15 (- 42 0.59 )22.32&0o,&&a1 (42 0.59) /s 24.78 /s据上面计算得出的数值可以绘出如图4.13(a)所示的轨迹曲线。M 1.2 1JS 1.4
40、 3.05 Q 5 o 5 o3 3- -z 2 I- I -養童幡乍-12-24-A1-1L»1 .啦112.41.0 '加講奥IM制曲(a)0.6 1.2 1 It 2.40 o moo o o o? 7 5 4 3 2 I加速度较大时的位移、速度、加速度曲线+剧 5 O 5111更'1任箱厢it 坨讯" 1/t血速fft旳间他/ -F- 4 2 C 2 4旳* W- 4 3 1 I I i-一- 厂M=闵琶8霍(b)加速度较小时的位移、速度、加速度曲线 图4.13带有抛物线过渡的线性插值2)设计第二条轨迹 对于3272324 27 ( 7515 )、第ta2(-)s 1.33 s22 27条a2151(27 1.332)038.88o2轨&2&2 a2(27 1.33)o/s 35.91°/s相应的轨迹曲线如图 4.13(b)所示。, 用抛物线过渡的线性函数插值进行轨迹规划的物理概念非常清楚,即如果机器人
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024-2025学年新教材高中地理 第2章 乡村和城镇 第2节 城镇化说课稿 新人教版必修2
- 江苏省环保产业项目融资渠道探索
- 2025年度品牌区域独家经营权许可合同
- 6 有多少浪费本可避免 说课稿-2023-2024学年道德与法治四年级下册统编版
- 7我们的衣食之源(说课稿)-统编版道德与法治四年级下册001
- 10000以内数的读写(说课稿)-2023-2024学年二年级下册数学人教版
- 二零二五年度知识产权授权合同补充协议2篇
- 2024年高中化学 第四章 电化学基础 第三节 电解池 第2课时 电解原理的应用说课稿 新人教版选修4
- 2024-2025学年新教材高中生物 第1章 遗传因子的发现 素养提升课 9:3:3:1的变式及个体基因型探究的实验设计题说课稿 新人教版必修2
- 二零二五年度仓库租赁安全与冷链物流全程服务协议3篇
- 2023年全国高考乙卷历史真题试卷及答案
- 数学小故事-二年级
- 骨科手术的术后饮食和营养指导
- 旅游定制师入行培训方案
- 奥数培训班课件
- 2024年中国南方航空股份有限公司招聘笔试参考题库含答案解析
- 六年级上册数学应用题100题
- 个人代卖协议
- 赏析小说语言(二)
- 【立高食品公司的偿债能力现状及问题分析(论文9000字)】
- 10.《运动技能学习与控制》李强
评论
0/150
提交评论