测量不确定度案例分析_第1页
测量不确定度案例分析_第2页
测量不确定度案例分析_第3页
已阅读5页,还剩43页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、生命赐给我们,我们必须奉献生命,才能获得生命标准不确定度A类评定的实例【案例】对一等活塞压力计的活塞有效面积检定中,在 各种压力下,测得10次活塞有效面积与标准活塞面积之比 1(由I的测量结果乘标准活塞面积就得到被检活塞的有效面 积) 如下:0.2506700.2506730.2506700.2506710.2506750.250671 0.250675 0.250670 0.2506730.250670问I的测量结果及其A类标准不确定度。【案例分析】由于n=10,l的测量结果为i ,计算如下0.250672希望是本无所谓有,无所谓无的。这正如地上的路;其实地上本没有路,走的人多了,也便成了路

2、s(l )n lii 1n2.05 10 6由于测量结果以10次测量值的平均值给出,由测量重 复性导致的测量结果I的A类标准不确定度为U (卜)s(i) 0.63 10 6 A 乔【案例】对某一几何量进行连续4次测量,得到测量值:0.250mm 0.236mm 0.213mm0220mm,求单次测量值的实验标准差。【案例分析】由于测量次数较少,用极差法求实验标 准差。s(x i )生命赐给我们,我们必须奉献生命,才能获得生命式中, R重复测量中最大值与最小值之差;极差系数c及自由度V可查表3-2表3-2极差系数c及自由度Vn23456789c1.131.692.062.332.532.702.

3、852.97V0.91.82.73.64.55.36.06.8查表得c=2.06nRs(xj _ u(Xj)(0.2500213)mm/2.060.018mmC2) 测量过程的A类标准不确定度评定对一个测量过程或计量标准,如果采用核查标准进行 长期核查,使测量过程处于统计控制状态,则该测量过程的 实验标准偏差为合并样本标准偏差S。p若每次核查时测量次数n相同,每次核查时的样本标 准偏差为Si,共核查k次,则合并样本标准偏差S为希望是本无所谓有,无所谓无的。这正如地上的路;其实地上本没有路,走的人多了,也便成了路生命赐给我们,我们必须奉献生命,才能获得生命ks2sp此时S的自由度Vii 1k=(

4、n-1) k。P则在此测量过程中,测量结果的A类标准不确定度为USpA式中的n为本次获得测量结果时的测量次数。【案例】对某计量标准(测量过程)进行过2次核查,均 在受控状态。各次核查时,均测10次,n=10,希望是本无所谓有,无所谓无的。这正如地上的路;其实地上本没有路,走的人多了,也便成了路生命赐给我们,我们必须奉献生命,才能获得生命,测量6本标准偏差为spS2S212Q.QI82 QQ152 k '2Q017mm计算得 s =Q. Q18mm,1S2=Q-Q15mm在该测量过程中实测某一被测件(核查标准)次,求测量结果y的A类标准不确定度【案例分析】因核查2次,故k=2,则测量过程

5、的合并样在该测量过程中实测某一被测件(核查标准),测昼 次,则测量结果y的A类标准不确定度为0.017mm60.007 mm其自由度为=(n-1) k= (10-1) x 2=183)规范化常规测量时A类标准不确定度评定规范化常规测量是指已经明确规定了测量程序和测量 条件下的测量,如日常按检定规程进行的大量同类被测件 的 检定,当可以认为对每个同类被测量的实验标准偏差相同时 通过累积的测量数据,计算出自由度充分大的合并样本标准偏差,以用于评定每次测量结果的A类标准不确定在规范化的常规测量(检定)中,测量m个同类被测 量, 得到m组数据,每次测量n次,第j组的平均值为,-x则合并样本标准偏差S为

6、P2m nIX X ij js 1 j 1i 1V m(n 1)p对每个量的测量结果 册A类标准不确定度X希望是本无所谓有,无所谓无的。这正如地上的路;其实地上本没有路,走的人多了,也便成了路生命赐给我们,我们 必须奉献 生命,才能获得生命u ( x . ) Spa' M而自由度为v =m( -1)【案例】取3台同类型同规格电阻表,各在重复性条件 下连续测量10次,共得3组测量列,每组测量列分别计 算得到单次实验标准差:s =°2°Q ,s =°24Q ,s =0 26Q1 2 3 '求合并样本标准偏差S及自由度。P【案例分析】采用合并样本标准差的

7、方法得:m n1 1x xjm(n 1)1 m 2 m1 Sj0.202Q242Q23V自由度二m(n-1)=3 x (10-1)=274)用预评估重复性进行A类评定类似于规范化常规测量,在日常开展同一类被测件的 常规检定、校准或检测工作中,如果测量系统稳定,测量重 复性不变,则可用该测量系统,以与测量被测件相同的 测量 程序、操作者、操作条件和地点,预先对典型的被测件的典型被测量值,进行n次测量(一般n不小于10),由 贝塞尔公式计算出单个测得值的实验标准偏差s(x),即重复 性。在对某个被测件实际测量时可以只测量n次(Kn v n),并以n次独立则量的算术平均值作为被测量的估计 值, 则该

8、被测量估计值的A类标准不确定度为u(x) s(x) s(x )/、n用这种方法评定的标准不确定度的自由度仍为二n -1可以提高对估计的A类标准不确定度的可信程度。希望是本无所谓有,无所谓无的。这正如地上的路;其实地上本没 有路,走的人多了,也便成了路生命赐给我们,我们 必须奉献 生命,才能获得生命当怀疑测量重复性有变化时,应及时重新测量和计算实验标准偏差s( X)。【案例】 已知对某一电压值进行测量的单次实验标准 差 预评估值为 s=0.025V, 进行规范化 常规测量,测量重复 性 未变化,对电压值进行 3 次测量,若测量 3 次的算术平 均值 作为被测量的估计值,求被测量估计值的A类标准不

9、 确定案例分析】因规范化常规测量,测量系统稳定,测量希望是本无所谓有,无所谓无的。这正如地上的路;其实地上本没 有路,走的人多了,也便成了路重复性不变,贝y: u =As 0.025V0.015VA类评定的几点说明:a、当测量结果取其中任一次,则uC)=s;b、当测量结果取算术平均值,则u(x)<snc、当测量结果取n次中的m次平均值,则U(X );md、自由度:v n 1。e、评定方法的选定:一般当测量次数n>6时用贝塞尔希望是本无所谓有,无所谓无的。这正如地上的路;其实地上本没有路,走的人多了,也便成了路生命赐给我们,我们 必须奉献 生命,才能获得生命公式计算实验标准差n

10、67; 6时用极差法【案例】某检定员在评定某台计量仪器的重复性 s 时, r通过对某稳定量Q重复观察了 n次,按贝塞尔公式,计算出任意观察值 q 的实验标准差 s( )=0.5,然后,考虑该仪 k qk器读数分辨力3 =1.0,由分辨力导致的标准不确定度为u(q) =0.293 =0.29X 1.0=0.29将s()与u (q)合成,作为仪器示值的重复性不确定L度(qqk r ku (qk)k(0.5)2(0.29 )20.580.6【案例分析】 重复性条件下,示值的分散性既决定于 仪器结构和原理上的随机效应的影响,也决定于分辨力。依 据JJF1059-1999第6.11节指出:同一种效应导致

11、的 不 确定度已作为一个分量进入u (y)时,它不应再包含在另c外的分量中”。该检定员的这一评定方法,出现了对分辨力导致的不 确定度分量的重复计算,因为在按贝塞尔方法进行的重复观察中的每一个示值,都无例外地已受到分辨力影响导致 测量值q的分散,从而在s(q )中已包含了 S效应导致的 kq结果,面不必再将u(q)与s(q )合成为u (q)。该检定员采用 将这二者合成作为u (q 是不对的。有些情况下。有些仪器的分辨力很差,以致分辨不出 示值的变化。俶验中会出现重复性很小,即:sq )<u(q)。k特别是用非常稳定的信号源测量数字显示式测量仪器,在 多次对同一量的测量中,示值不变或个别的

12、变化甚小,反而不如u(q)大。在这一情况下,应考虑分辨力导致的测量不确定度分量,即在s(q)与u(q)两个中,取其中一个较大k 者,而不能同时纳入。3)标准不确定度B类评定的实例【案例1】校准证书上给出标称值为1000g的不锈钢标准砝码质量m的校准值为1000.000325g,且校准不确定度为s24 g(按三倍标准偏差计),求砝码的标准不确定度。【评定】由于a=U=24g, k=3,则砝码的标准不确定度为希u(m)=24ug/3=8ygs【案例2】校准证书上说明标称值为10Q的标准电阻在 23C时的校准值为10.000074 Q,扩展不确定度为90卩Q , 置信水平为 99%,自由度趋于无穷,

13、求电阻的相对标准不确 定评定】 由校准证书的信息可知a=U =90 卩 Q , p=0.9999假设为正态分布,查表得到k=2.58 ,则电阻校准值的标准不确定度为u (R )= 90 x Q12.58=35 丛 QB S相对标准不确定度为:u(R)/R =3.5 X 10-6。【案例3】手册给出了纯铜在20C时线热膨胀系数 a (C )为1652 X 10-6C-1 ,并说明此值的误差不超过20 U± 040 X 10.6 C _1 ,求a (C )的标准不确定度。20 U【评定】 根据手册,a =0.40 X 10 -C -i ,依据经验假 设为等概率地落在区间内,即均匀分布,查

14、表得k=十,铜的线热膨胀系数的标准不确定度为u( a)=0.40 x 1BC -1 .20/ 3 =0.23 X 10-6 C -1【案例4】由数字电压表的仪器说明得知,该电压表的 最大允许误差为土(14X 10-6 x读数+ 2X 10-6 x量程),用 该电压表测量某产品的输出电压,在10V量程上测1V时, 测量10次,其平均值作为测量结果,得=0.928571V,问 测量结果的不确定度中数字电压表引入的标准不确定度是多 少?【评定】电压表最大允许误差的模为区间的半宽度a=14X 10-6 x 0.928571V+ 2X 10-6X 10V=33X 10 V=33(i V设在区间内均匀分布

15、,查表得k= J3 ,则数字电压表引入测 量结果的标准不确定度为u( V)=33 卩 V /、3=19卩 V【案例5】某法计量技术机构为要评定被测量丫的测量结果y的合成标准不确定度u (y)时,y的输入量中,有碳元c素C的相对原子质量,通过资料查出C的相对原子质量为A (C)=12.0107(8) 。资料说明这是国际纯化学和应用化学 r 联合会给出的值。如何评定由于C的相对原子质量不准确 引入的标准不确定分量?【评定】 根据 2005年国际纯化学和化学联合会给出的 值,C的相对原子质量为A(C)=12.0107(8),括号内的数 是标准不确定度,与相对原子质量值的末位对齐。所以碳 元素 C 的

16、相对原子质量为 A(rC)=12.0107 ,其标准不确定 度为 u =0.0008。c(3)合成标准不确定度计算举例【 案 例 1】一台数字电压表的技术说明书中说明:“在 校准后的两年内,示值最大允许误差为土( 14 x 10-6 x读 数 + 2 x 10-6 x 量程)”。现在校准后的 20 个月时, 在 1V 量程上测量电压 V, 一组独立重复观察值的算术平均值为 0.928571V, 其 A 类 标准不确定度为12凶。求该电压测量结果的合成标准不确 定度。【案例分析】根据案例中的信息评定如下:测量结果:v=0.928571V,测量结果的不确定度评定:经分析影响测量结果的主要 不 确定

17、度分量有两项,分别用A类和B类方法评定,再 将 两个分量合成后得到合成标准不确定度。(1)由测量重复性引入的标准不确定度分量,用A类方 法评定:u (V) =12fVoA(2)由所用的数字电压表不准引入的标准不确定度分量,用B类方法评定。读数:0.928571V;测量上限:1Va=14x 106 x 0.928571V+ 2X 106 x 1V=15 pV假设为均匀分布,k= 3U (v ) =a/k=15pV/ 3 =8.7 pV(3) 合成标准不确定度由于上述两个分量不相关,可按下式计算u (V )cU2(V )Aw(V)BJ12 V)2(8.7 V)215 V【案例 2】 在测长机上测量

18、某轴的长度,测量结果为40.0010mm,要求进行测量不确定度分析与评定,给出测 量结果的合成标准不确定度。案例分析】经分析,各项不确定度分量为:1)读数的重复性引入的标准不确定度分量 u 1从指示仪上7次读数的数据计算得到测量结果的实验标准偏差为0.17 m, u=0.17卩m。1(2)测长机主轴不稳定性引入的标准不确定度分量 u希望是本无所谓有,无所谓无的。这正如地上的路;其实地上本没 有路,走的人多了,也便成了路生命赐给我们,我们必须奉献生命,才能获得生命。由实验数据求得测量结果的实验标准偏差为0.10m, u=g. 10 m。(3)测长机标尺不准引入的标准不确定度分量u Q3根据检定证

19、书的信息知道该测长机为合格,符合±0.1 jim 的技术指标,假设为均匀分布,取k= 3 ,、则:U3=O.1 卩m/ 3=0.06 m。(4) 温度影响引入的标准不确定度分量u 44根据轴材料温度系数的有关信息评定得到其标准不确希望是本无所谓有,无所谓无的。这正如地上的路;其实地上本没有路,走的人多了,也便成了路生命赐给我们,我们 必须奉献 生命,才能获得生命定度为 005 im, u=0.05 m。由于各分量间不相关,则轴长测量结果的合成标准不确 定度为:U20172CTTO200620052m 0217.扩展不确定度的确定【案例】上节案例2,在测长机上测量某轴的长度,经评 定已

20、知测量结果的合成标准不确定度u =0.21 im。求测量 c结果的扩展不确定度。【案例分析】根据已知信息,已知合成标准不确定度u ,取k=2,则扩展不确定度:U=ku =2X 0.21 m =0.42卩m。c【案例】某测量结果的合成标准不确定度为0.01mm其有 效自由度为9,要求给出其扩展不确定度Uo(由龙展不确 p定度所确定的区间具有包含概率为P=95%且合成分布为正 态分布。)【案例分析】根据确定U的步骤,计算如下;1 已知u(y)= 0.01mm, u(y)的有效自由度 =9;cceff2 要求P=95%=0.95,根据P和 查t分布表,得至U efft(0.95 , 9)=2.26;

21、3 贝U k=t(0.95,9)=2.26;p4 计算 U , U =k u =2.26 x 0.01mm=0.023mm;pp pc所以,该测量结果的扩展不确定度u =0.023mmk=2.26 。95p(5)综合案例某实验室校准一台直流电压表,按照校准规范,连接并 操作被校表和标准装置, 标准装置是一台标准电压源,将 标准电压输入到被校表, 被校表在 100V 量程上置于示值 100.000V。读标准装置显示的输出标准电压值,共测量10次, 将标准装置在每次测量时的读数记录在表 1 中。表 1 原始记录表序号1A读数x/v彳cc c彳u1r1UU.U15a rr c >1 C2100

22、.016cc cc 彳3A100.001cc cco499.998cc coo599. 9886100. 008<jfl CC C " c7r100.0128c100.0139100.01510查最近实验室标准装置的校准证书,由上级计量机构给出的100V时的修正值及其不确定度为:修正值:V=20x 10-6U =45 X 10-6 ,k=3rel要求:1)计算原始记录中测量结果的算术平均值和实验标准 偏差。2)确定标准装置的修正值及其扩展不确定度。(3)给出被校直流电压表在100V时的校准值及其k=2 的扩展不确定度。答案如下:(1) 计算原始记录中测量结果的算术平均值和实验标准 偏差。10X.算术平均值:X i 1 .100008V ;希望是本无所谓有,无所谓无的。这正如地上的路;其实地上本没 有路,走的人多了,也便成了路s(x)10i 1XX 2iQOO9/ ;10 1因此,按照记录的信息,算术平均为100.008V,实验标 准偏差为0.009V。(2) 根据标准装置的最近的校准证书,标准装置的修正 值 为V=20X 10-6。由上级出具的校准证书给出的修正值的s扩展不确定度为U =45 X 10-6 , k=3。(3) 给出被校直流电压表在100V时的校准值及其k=2的希望是本无所谓有,无所谓无的。这正

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论