




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、1第五章 能量守恒方程伯努利方程Chapter 5 Conservation of Energy Bernoullis Theorem25.1伯努利方程的微分形式Differential Form of Bernoullis Equation在流体的任意方向流动中,沿着流体流线方向考查流体的流动,则流体的流动只有一维流动的特征。设重力场垂直向下,从稳定理想流体的动量方程(3-44)出发,推导伯努利方程。 按全微分的定义,流体质点的流动速度的微分为:故:vvvdvdxdydzxyzdvv dxv dyv dzdtx dty dtz dt3相应的速度分量vx,vy,vz对时间t的导数可以写成:xx
2、xxxyzyyyyxyzzzzzxyzdvvvvvvvdtxyzdvvvvvvvdtxyzdvvvvvvvdtxyz4各速度分量对时间t的导数可以写成:xxxxyyyyzzzzdvdvdvdxvdtdx dtdxdvdvdvdyvdtdy dtdydvdvdvdzvdtdz dtdz5因此第三章中的欧拉方程式:可写成:()()(353)()xxxxyzxyyyxyzyzzzxyzzvvvPvvvgxyzxvvvPvvvgxyzyvvvPvvvgxyzz 111xxxyyyzzzdvPvgdxxdvPvgdyydvPvgdzz 6如坐标系的z轴垂直地面,则gx=gy=0,gz= -g,再对上面三
3、式的两端分别乘以dx、dy、dz,则:将三式相加得:111xxyyzzzPv dvdxxPv dvdyyPv dvdzg dzz 1(5 1)xxyyzzzPPPv dvv dvv dvdxdydzg dzxyz 7流体质点在空间任意方向上的速度与各方向上速度分量的关系为: 即:将此式代入(5-1)式,又右端第一项括号内为压力的全微分dp,故(5-1)可写成:此式即为流体质点在微元空间(dx,dy,dz)内沿任意方向流线运动时的伯努利方程伯努利方程能量平衡关系式能量平衡关系式。2222xyzvvvvxxyyzzvdvv dvv dvv dv(52)10gdzdpvdv8当流体质点沿流线由空间一
4、点p1(v1,z1)运动到p2(v2,z2),如图所示。质点流动过程中的能量平衡关系可由积分形式的伯努利方程确定。将微分形式伯努利方程(5-1)积分求解即可得到:2221112211122221011112211(53)2zpvzpvgdzdpdvgzpvgzpvgzpvconst9式(5-3)是伯努利在1738年提出的,这种形式的方程也称伯努利方程也称伯努利方程,它表示同一流线上不同点处的能量和总保持为一个不变的常数,即为能量守恒能量守恒。将(5-3)式各项都乘以则此式成为: 此式各项的量纲都是kgm/s2m2或Nm/m3,可把(5-3)式中各项视为能量的表现形式。式(5-4)中各项相应的视
5、为单单位体积流体所具有的位能、压力能和动能。位体积流体所具有的位能、压力能和动能。215-42gzpvconst()位能压力能动能10把(5-4)式各项除以常数g,则可得伯努利方程的常用形式: 此式各项的量纲都是m,依次各项的物理意义为分别为单位质量流体所具有的位能(位置水头位置水头)、压、压力能力能(压力水头压力水头)和动能和动能(速度水头速度水头)。流体的位能、压力能、和动能三者之和称为总能量(机械能)。速度水头压力水头位置水头 2 2constgvgpz11另一方面,由于伯努利方程(5-4)中每项都具有长度单位,即表示某一高度, 所以可以用一几何图形表示各项之间的关系,如图所示:12 图
6、中流线同时也代表流线上各点距基准线上的位置高度,称为位置水头位置水头;P/g项指在任意点z处由压力作用水头上升的高度,称为压力水头压力水头;顶部水平线与P/g项之差代表由速度作用水头上升的高度(v2/2g),表示z点处流体的速度v垂直向上喷射时所能达到的射程高度,称为速度水头速度水头。13伯努利方程中,位置水头、压力水头和速度水头三项之和称为总水头。由图可见,尽管各点位置1、2的两种水头各不相等,但每处的三项之和为一常数,即总水平线为平行于基准线的水平线。14伯努利方程的物理意义及几何意义n物理意义:运动状态单位重量理想流体所携带的总能量在它所流经的路径上的任何位置均保持不变,但三种能量可相互
7、转换。n几何意义:总水头线是平行于基准线的水平线。15165.2伯努利方程的应用Applications of Bernoullis Equation导出伯努利方程的限制条件是:n无粘性流动;n稳定流动;n不可压缩流体;n沿一根流线。在实际管道系统中,不可能获得这样的流体条件,但在缓变流的情况下,伯努利方程仍能较准确地确定管道流体流动的能量平衡关系。所谓缓变流,是指流场内各流线之间的夹角很小;如果流场转向,各流线也能一致地转向,转向的曲率半径又很大。17但由于伯努利方程是从流体流动体系的能量平衡角度描述流体的力学关系及运动规律,方程的物理意义明确,特别是方程具有简单的代数方程的形式,应用十分简
8、便,所以已被人们作为涉及流体传输的动力、化工、冶金工程中广泛应用的、流体输运工艺参数设计的一个基本理论和计算工具。然而,由于工程中所涉及的实际流体都是具有粘性的,如:水、石油、和液态金属等;另一方面,实际容器和管道中流动的液体运动状态通常是十分复杂的 ,不满足伯努利方程所要求的:沿一根流线的稳定缓变流条件、流线平行、在过流截面上流速处处相等等条件。18工程上解决上述矛盾的做法是在伯努利方程中引入一定的修正项和修正系数,一方面保持伯努利方程的简洁的数学形式,另一方面用修正项/修正系数来计算由于不满足伯努利方程的应用条件,如:粘性、紊流和惯性流等,而引起的偏差。19一、在管流流动中的应用 Appl
9、ications in Conduits对于管道中流量和流速的计算,人们通常采用管道中地平均速度计算。当流体是无粘性的理想流体,并以稳定的缓变层流方式流动时,管道中某截面上各点速度基本相等。此时伯努利方程可给出准确地定量计算。但是对于实际流体由于有粘性,无论是层流还是紊流,管道中任一截面上各点流速不相等(由于粘性作用,管壁上的流速为零,中心线上最大)。此时采用平均速度计算管路系统中任意截面的能量平衡时,在伯努利方程中引入流股速度分布修正系数。20要将适用于流体单一质点或微团沿流线运动的情况,推广到管流系统中,则除不可压缩、理想流体、稳定流动条件外,还要求:n流线相互平行;n过流截面上的速度均相
10、等。只有在缓变流条件下,才能较准确地应用。21n按平均流速计算平均动能:n实际平均动能:212xv 20022211RxrdrdvR22则引入流股速度分布修正系数后,伯努利方程变为:流股速度分布修正系数取决于流体的流动状态。式中:221211221211(56 )22vvgzpgzpa221211221211(56 )22vvzpzpbgggg0.51/1.061.0层流流动时 紊流流动时23二、实际管路系统中粘性流体的输运 Transport of Viscous Fluids in Conduits实际工程及生活中接触到的流体均具有粘性,另一方面,实际流体的管路输送系统的结构十分复杂,不仅
11、有管道的长短、粗细差别(对沿程粘性摩擦阻力影响很大),而且有管道转弯,管道截面变化和阀门等,对流体流动产生局部阻力。流体的粘性管流的沿程摩擦阻力管道的长度、直径、粗糙度管流流动的能量损失管路的急弯度、截面的变化(扩张和缩小)及阀体管流的局部阻力流体的惯性和粘性24上述各种因素产生的阻力均会产生管流流动的能量损失,为正确反映这些能量损失,在伯努利方程中引入能量损失项,即: 式中:h失为管路系统流体流动在1,2两截面之间的能量损失。22112212(57)22pvpvzzhgggg失25 尽管流体流动系统的阻力产生的原因有所不同,但流体阻力却均与流体的流速或动能直接相关,其阻力大小与当时流体动能具
12、有不同程度的正比关系。为了计算上的方便,人们将各种不同形式的阻力损失项表示为如下的统一形式: 式中:K流体的阻力系数,它包括了所有摩擦阻力系数K摩和局部阻力系数K局; 22vhKg失26 因为 ,系数K可以理解为单位动能的阻力。阻力系数K摩和K局的计算表达式的形式与具体的造成阻力的种类和形式有关。人们已根据大量的实验与理论分析总结出了各种阻力稀疏的计算与分析。2/2/Khv失27摩擦阻力损失Friction Losses28局部损失Local losses due to Enlargement and Contraction293031三、应用实例金属液从底注浇包内的流出 Flow from Ladles伯
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2030中国水产养殖行业市场深度调研及竞争格局与投资战略研究报告
- 2025-2030中国椰纤果行业市场发展趋势与前景展望战略研究报告
- 2025-2030中国棉花种子行业市场发展趋势与前景展望战略研究报告
- 2025-2030中国无支撑单涂层胶带行业市场发展趋势与前景展望战略研究报告
- 2025-2030中国旅游鞋革行业市场发展分析与发展趋势及投资风险研究报告
- 2025-2030中国收缩套标行业市场发展趋势与前景展望战略研究报告
- 2025-2030中国接收干燥机行业市场发展趋势与前景展望战略研究报告
- 2025-2030中国护唇产品行业市场发展趋势与前景展望战略研究报告
- 2025-2030中国手机银行和存储行业市场发展趋势与前景展望战略研究报告
- 2025-2030中国户外家具及配件行业市场发展趋势与前景展望战略研究报告
- 2025国家粮食和物资储备局直属和垂直管理系统事业单位招聘统一笔试自考难、易点模拟试卷(共500题附带答案详解)
- 短期资金拆借合同样本
- 汽车液压主动悬架系统的设计与仿真
- 第五讲-铸牢中华民族共同体意识-2024年形势与政策(讲稿)
- 水泵电机年度维修项目方案投标文件(技术方案)
- 数学-天一大联考2025届高三四省联考(陕晋青宁)试题和解析
- 《生物科技》课件
- 2025全国辅警考试题库及参考答案
- 城建档案地方立法研究
- 集装箱装货知识培训课件
- 藏族民间舞-热巴舞知到智慧树章节测试课后答案2024年秋西藏大学
评论
0/150
提交评论