




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、学习必备欢迎下载班级:姓名:实数学问点比较:2算术平方根平方根立方根,定义如正数 xx2a , 如数 x , xa , 如数 xx3a,正数 x 叫做 a 的算术数 x 叫做 a 的平方数 x 叫 做 a 的立平方根, xa ; 根, xa方根, x3 a ;a的范畴a0a0a 是任意数表示a 根号 a a 正 负 根 号a 3 a 三次根号 a 正数有一个算术平方根,是正数正数有两个平方根, 它们互为相反数正数有一个立方根,是正数0 的算术平方根是 00 的平方根是 00 的立方根是 0负数没有算术平方根负数没有平方根负数有一个立方根,是负数性质aa00 双重非负性3 - a3 a2aa2a
2、aa03a3a33aa类型一:求值被开方数的小数点向 右(左)每移动两位, 算术平方根的小数点 向右(左)移动一位;被开方数小数点向右(左)每移动三位,立方根的小数点向右(左)移动一位;例 1、求以下各数的算术平方根;( 1) 100(2) 49(3)1 964162(4)0.0025(5)0( 6)2(7) - 6例 2、求以下各数的平方根;( 1)100( 2) 49(3)1 96416(4)0.0025(5)0(6)2(7)- 6 2例 3、求以下各数的立方根;( 1)1000(2)8( 3) 2 10( 4)0.001(5)0(6)2( 7)- 6 32727类型二:化简求值2例1、
3、求以下各式的值;( 1)2=( 2) -169256=(3)0.0196 =( 4) -25- 24=(5) - 3- 27=(6) 37293 512 =2222422例 2、求以下各式的值( 1)25 -4(- 2)(2)0.000110(- 6)0.2a0类型三:算术平方根的双重非负性a0一、 被开方数 的非负性 a02例 1、以下各式中,有意义的有哪些?1- 6-62 6 2- 6aaa例 2、如以下各式有意义,在后面横线上写出x 的取值范畴 ;( 1)x (2)5 - x 例 3、如 x 、 y 都是实数,且 yx 33x8 ,求 x3y 的立方根;二、 算术平方根 的非负性a0例
4、4、( 1)a12 的最小值是,此时 a 的取值是;( 2) 2-a1 的最大值是,此时 a 的取值是;例 5、如2x1y 30 ,求 ( xy)2的值;例 6、已知2 x2 233y2270 ,求( xy)2 的平方根;类型四、算术平方根 :被开方数的小数点向右(左)每移动 两位,算术平方根的小数点向右(左)移动 一位;立方根:被开方数的小数点向右(左)每移动三位,立方根的小数点向右(左)移动一位;例1、 观看:已知5.2172.284, 521.722.84填空:0.05217 52170_ _ _ _ _ _例2、 令2.361.536, 23.64.858 就 236 ;0.00236
5、 如 x04858 , x 如a1061536 ,求 a 的值;例 3、如 15a, 3 37b,就0 . 15 ,337000 ;类型五、平方根的性质:正数有两个平方根,它们互为相反数;例1、 一个非负数的两个平方根是 2a1 和a - 5 ,这个非负数是多少?例2、 已知一个数的两个平方根分别是3a1 和 a11,求这个数的立方根类型六、解方程;例 1、求以下各式中的 x 的值:( 1) x 2 =196;( 2) 5x 2100 ;(3)36( x3)2250 ;( 4) x 364(5) 8 x 31250(6) x3 3270类型七:的根指数是 2,指数 2 经常省略不写;3的根指数
6、是 3,指数 3 不行省略;例 1、如 2 b1 5 和 3a - 1都是 5 的平方根,就 a , b ;例 2、已知 am n mn 3 是mn3的算术平方根, bm 2 n 2 m2n 是 m2n的立方根,求 ba的立方根;类型八、估值;例1、 已知 m, n 为两个连续的整数,且 m11n 就 mn =;例2、 已知x, y 为两个连续的整数,且 x51y ,就 xy =;例 3、估量 68 的立方根的大小在()a、2 与 3 之间b、3 与 4 之间c、4 与 5 之间d、5 与 6 之间例 4、如 5 的整数部分是 a ,小数部分是 b ,就ab5 的值是多少?例 5、如 913
7、与9 -13 的小数部分分别是 a 与b ,试求4a3b类型九:a2a ,aa a0;3 a33a3,aa2例 1、以下判定错误选项 3223a、如ab ,就 abb、如 3 a3 b ,就 ab3c、如 3 ab,就 abd、如ab,就 ab例 2 、 如 图 实 数 a 、 b 对 应 数 轴 上 的 点 a 和 点 b , 化 简 :a 2b2 ab 2 ab 2提示: |a|a( a0),ab0( a 0), a( a0) .类型八、平方运算与开平方运算互为逆运算;a0b2aaa033立方运算与开立方运算互为逆运算;aa例1、 如x22 ,求 2x5 的算术平方根;例 2、已知根;x
8、- 2 的平方根是± 2, 2 xy7 的立方根是 3,求 x 2y2 的算术平方类型九、3 - aa (被开方数互为相反数,对应的立方根也互为相反数)3例 1、如 31- 2x 与 3 3y2 互为相反数,求 12 x 的值;y无理数(定义):无理数的特点 :1、圆周率 及含有的数,例如: 2,7;2、带根号且开不尽方的 ,例如: 35, 3 3,3, 4.6,;3、人造无理数(无限不循环小数) ,例如: 3.56010010001实数(定义):【与是一一对应的 】实数:(分类) 按定义:按性质符号:一、判定;1. 实数不是有理数就是无理数;()2. 无限小数都是无理数;()3. 无理数都是无限小数;()4. 带根号的数都是无理数;()5. 两个无理数之和肯定是无理数; ()6. 有理数都可以在数轴上表示,反过来,数轴上全部的点都表示有理数()7. 实数与数轴上的点是一一对应的;()8. 无理数都是无限不循环小数; ()类型一:实数的性质在实数范畴内,相反数、倒数和肯定值的意义和在有理数范畴内的完全相同例 1、分别求以下各数的相反数、倒数和肯定值: 1 3 64;2225;311.解: 1 3(2)(3) 64 4, 3 64的相反数是 4,倒数是1,肯定值是 4;4类型二:实数的运算【一】
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 农资化肥服务合同范本
- 70代劳动合同范本
- 公司设备收购合同范本
- 云南元旦晚会舞台施工方案
- 出口黄金加工合同范本
- 公司交接合同范本
- 劳务委托施工合同范本
- 仓库地面清洁合同范本
- 兼职推广合同范本
- 加盟货车合同范本
- 数控机床技术先进性
- 电梯井脚手架搭设施工施工方法及工艺要求
- 【正版授权】 IEC 62317-9:2006+AMD1:2007 CSV EN Ferrite cores - Dimensions - Part 9: Planar cores
- 《阿Q正传》(课件)2023-2024高二语文选择性必修下册
- 2024年黑龙江交通职业技术学院单招职业技能测试题库及1套参考答案
- 爱国主义教育基地组织管理制度
- 2024届辽宁省沈阳市名校中考化学模拟试题含解析
- 2023版《思想道德与法治》(绪论-第一章)绪论 担当复兴大任 成就时代新人;第一章 领悟人生真谛 把握人生方向 第3讲 创造有意义的人生
- 第6课 欧洲的思想解放运动(教学课件)-【中职专用】《世界历史》同步课堂(同课异构)(高教版2023•基础模块)
- 2024年金华职业技术学院单招职业适应性测试题库及答案解析
- 2024年湖南民族职业学院单招职业适应性测试题库及答案解析
评论
0/150
提交评论