spss练习作业具体步骤_第1页
spss练习作业具体步骤_第2页
spss练习作业具体步骤_第3页
spss练习作业具体步骤_第4页
spss练习作业具体步骤_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、一、调查问卷二、用SPSS Statistics软件进行描述统计分析 1、某地区经济增长率的时间序列图形。 解:第一步:数据来源,如图1 图1 某地区经济增长率xls截图 图2 Spss软件制作过程截图 第二步:将数据输入SPSS软件之中,如图2,制作某地区经济增长率的时间序列图形,如图3。 图3某地区19902012年经济增长率的时间序列图 第三步,从图中可以看出,某地区随时间的变化经济增长率变化趋势较大。 2、用SPSS Statistics进行描述统计分析解:第一步,按照题目中的要求,随机选取了148个数据,如图4部分数据:图4 Spss随机数据截图第二步,根据要求,对上月工资进行描述统

2、计分析,主要包括描述数据的集中趋势、离散程度(见表1),绘制直方图(见图5)。 表1 上月工资描述统计表(单位:元)集中趋势离散趋势均值2925极小值1500中值2900极大值4800众数2900全距3300和432900标准差496.364偏度0.165峰度1.238数据总计148 图5 上月工资直方图 第三步,分析数据的统计分布状况。首先,从集中趋势来,上个月平均工资2925元,其中众数和中数也都在2900元,这说明大部分工资水平在2900左右。其次,从离散趋势来看,最高工资4800元,最低工资1500元,最高工资和最低工资相差3300元,标准差为496.364,相差较大。最后,从直方图来

3、看和评述统计表来看,工资在2900元以上的占多数。可以的该地区整体工资水平大于平均值的占多数,该地区工资水平相对较高。峰度为1.238,偏度为0.165符合正态分布。三、用SPSS Statistics软件进行参数估计和假设检验及回归分析 1、计算总体中上月平均工资95%的置信区间(见表3)。解:总体中上月平均工资分布未知,但是样本容量大于30,且已知标准误,所以通过SPSS分析得出总体中上月平均工资95%的置信区间,见表3, 假设; H0:总体中上月平均工资95%的不在此在此区间 H1:总体中上月平均工资95%的在此区间表3 总体中上月平均工资95%的置信区间均值95%的置信区间下限2844

4、.37Sig.(双侧)上限3005.630.000 答,总体中上月平均工资095的置信区间为2844.37,3005.63,p=0.000<0.01,作出这样的推论正确的概率为0.95,错误的概率为0.05。 2、检验能否认为总体中上月平均工资等于2000元。 解:在本案例中,要检验样本中上月平均工资与总体中上月平均工资(为已知值:2000元)是否存在差异,即某一样本数据与某一确定均值进行比较。虽然不知道总体分布是否正态,但样本较大(N>30),可以运用单样本T检验.通过SPSS检验结果见(表4 、表5) 设; Ho: H1: 其中,表示总体中上月平均工资 表4 单个样本统计量N均

5、值标准差均值的标准误上月工资1482925.00496.36440.801 表5 单个样本检验tdfSig.(双侧)均值差值检验值 上月工资22.6711470.000925.000 2000 答:作出结论,均值差值为925,t=22.671,p=0.000<0.01,所以拒绝原假设,接受备择假设,即否认总体中上月的平均工资等于2000元。3、检验能否认为男生的平均工资大于女生 解:两个样本均来自于正态分布的总体且男女上月工资独立,可以进行独立样本T检验,(见表6、表7) 表6 组统计量性别N均值标准差均值的标准误上月工资男生733156.16442.84051.831女生752700.

6、00441.12950.937假设1:H0: H1: 其中,从表7中方差方程的 Levene 检验可以看出,F=0.101,P=0.751>0.05,所以不能拒绝原假设,可以认为两组数据无显著差异,所以应该选择方差相等下的T检验。表7独立样本检验方差方程的 Levene 检验T检验FSig.tdfSig.(双侧)均值差值标准误差值上月工资假设方差相等0.1010.7516.2771460.000456.16472.667假设方差不相等6.277145.8590.000456.16472.670假设2: H0: H1: 其中1代表男生总体平均数,2代表女生总体平均数,下同 作出结论:从表6

7、、表7中可以看出,男生有73人,平均工资3156.16元,女生75人,平均工资2700.00元。t=6.277,且p=0.000<0.001 所以拒绝原假设,接受备择假设,差异极显著。根据表6,可以最后得出结论,男生平均工资大于女生的结论。4、一些学者认为,由于经济不景气,学生的平均工资今年和去年相比没有显著提高。检验这一假说。 解: 根据题意可知,需要进行相关样本T检验,设: H0:12 H1;12 同上表8 相关样本T检验均值标准差均值标准误Tdf相关系数sig上月工资2925496.36440.801去年同月工资2721.62447.29636.767上月工资&去年同月工资

8、203.378183.10115.50113.5311470.930.000 通过表8可知,t=13.531,P=0.000<0.01,所以拒绝原假设,接受备择假设,即学生的平均工资今年和去年相比有显著提高。5、方差分析。(1)使用单因素方差分析的方法检验:能否认为不同学科的上月平均工资相等。如果不能认为全相等,请做多重比较。 解:第一步,提出假设,H0:不同学科上月的平均工资是相同的 H1:至少有两门学科上个月的平局工资是相同的 经过SPSS软件计算,见表9, 表9 三门学科上月工资水平方差分析表平方和df均方F显著性组间372977.8792186488.9390.7540.472组

9、内3.584E7145247203.601总数3.622E7147第二步,决策,F=0.754,P=0.472>0.05,接受H0,拒绝 H1,三者之间没有显著性差异。可以认为不同学科上月工资水平相同。第三步,多重比较,经过Levene检验(见表10),p=0.724,方差没有显著性差异,方差齐性,经过LSD检验(见表11),P值均大于0.05,所以可以得出同样的结论,三门学科的上月工资水平没有差异。 表10 方差齐性检验Levene 统计量df1df2显著性.32321450.724 表11 多重比较(I) 学科(J) 学科均值差 (I-J)标准误显著性95% 置信区间下限上限LSD1

10、2-112.34899.458.261-308.9284.233-111.912108.528.304-326.41102.5921112.34899.458.261-84.23308.923.43698.038.996-193.33194.2031111.912108.528.304-102.59326.412-.43698.038.996-194.20193.33(2)在方差分析中同时考虑学科和性别因素,用双因素方差分析模型分析学科和性别对上月平均工资的影响。 解: 第一步,提出假设,H0:性别和学科对上月工资水平没有影响 H1:性别和学科同时对上月工资水平有影响 第二步,经过SPSS计算

11、,见表12, 表12主体间效应的检验源df均方FSig.校正模型51603013.8998.071.000性别17202158.04236.263.000学科2153037.863.771.465性别 * 学科27642.822.038.962总计148 第三步,作出决策 性别因素P=0.000<0.01,在0.01水平上差异显著,所以拒绝原假设,接受备择假设,即性别因素对工资水平有显著性影响,和前面结果一致。学科因素P=0.465>0.05,在0.05水平上差异不显著,所以接受原假设,拒绝备择假设,即学科因素对上月工资水平没有影响,和前面结果一致。性别 * 学科p=0.962&g

12、t;0.05,在0.05水平上差异不显著,所以接受原假设,拒绝备择假设,即学科和性别因素同时对上月工资水平没有影响。6、非参数检验。(1)用非参数检验方法检验能否认为男生和女生上月工资的中位数相等。 解:第一步,采用wilcoxon符号秩检验中位数 ,选择的原设与备择假设如下: H0:男生与女生上月工资的中位数相等; H1:男生与女生上月工资的中位数不相等 。 第二步,通过SPSS软件计算,见表13、14 表13 检验男女生上月工资中位数是否相等wilcoxon秩和检验中秩和的计算结果N秩均值秩和上月工资男生7394.676911.00女生7554.874115.00总数1

13、48表14 wilcoxon秩和检验的检验统计量和p值上月工资Mann-Whitney U1265.000Wilcoxon W4115.000Z-5.663渐近显著性(双侧).000精确显著性(双侧).000精确显著性(单侧).000点概率.000 第三步,男生上月工资的平均秩为41.33,女生上月工资的平均秩是19.84,说明从样本看男生上月工资的中位数要高于女生。用正态分布计算时的M=1265.000,W=4115.000,Z=-5.663,p=0.000<0.01,可以拒绝原假设,认为男生与女生上月工资中位数不相等。若进行单侧检验:H0:男生月收入中位数小于女生月收入的中位数;H1

14、:男生月收入中位数大于于女生月收入的中位数。P值为0.000,可以拒绝原假设。H0:男生月收入中位数大于女生月收入的中位数;H1:男生月收入中位数小于女生月收入的中位数。P值为1-0.000/2 =1,接受原假设。因此可以认为男生上月工资中位数大于女生上月工资中位数。(2)用非参数检验方法检验学生上月工资和去年同月工资的中位数是否有显著变化。 解:第一步,采用非参数检验中的两个相关样本样本,选择的原假设与备择假设如下: H0:上月工资与去年同月工资差值为0 H1:上月工资与去年同月工资差值不为0 第二步,通过SPSS软件计算,结果如表15、16 表15 wilcoxon秩和检验中秩和的计算结果

15、N秩均值秩和去年同月工资 - 上月工资负秩10665.466938.50正秩1315.50201.50结29总数148 表16 wilcoxon秩和检验的检验统计量和p值去年同月工资 - 上月工资Z-8.990渐近显著性(双侧).000 第三步,作出结论,由于此样本为大样本,应该采用渐近显著性的p值(0.000),小于0.01,拒绝原假设,接受备择假设,则可以认为上月工资与去年同月工资有显著差别。(3)用非参数检验方法不同学科学生平均学分绩点的中位数是否相等。解:第一步,采用Kruskal-Wallis检验不同学科学生平均学分绩点的中位数是否相等,原假设和备择假设设置如下: H0:不同学科学生

16、平均学分绩点的中位数相等; H1:不同学科学生平均学分绩点的中位数不相等第二步,通过SPSS软件计算结果如表17、18;表17 Kruskal-Wallis检验中计算的各组平均秩学科N秩均值平均学分绩点经济类4169.39管理类6475.73其他4377.53总数148表18 Kruskal-Wallis检验的检验统计量和p值平均学分绩点卡方.851df2渐近显著性.653第三步,作出结论,因为p=0.653>0.05,不可拒绝原假设,认为三个学科平均学分绩点的中位数没有显著差异.。(4)检验学生的上月工资是否服从正态分布。 解:第一步,样本是否来自正态分布,可用单样本K-S检验,原假设

17、和备择假设设置如下 H0:学生的上月工资服从正态分布 H1:学生的上月工资不服从正态分布 第二步,通过SPSS软件计算结果如表19表19 单样本 Kolmogorov-Smirnov 检验上月工资N148Kolmogorov-Smirnov Z0.981渐近显著性(双侧)0.291 第三步,作出结论,p=0.291,大于0.05,不能拒绝原假设,也就是说能认为此样本来自正态分布。(5)检验学生对专业的满意程度是否为离散的均匀分布第一步,采用卡方分布进行检验,H0:学生对专业的满意程度服从离散的均匀分布 H1:学生对专业的满意程度不服从离散的均匀分布第二步,通过SPSS软件计算结果表20、21

18、表20 不同专业满意度频数与期望频数观察数期望数残差非常不满意429.6-25.6不满意1729.6-12.6基本满意4529.615.4比较满意5229.622.4非常满意3029.6.4总数148表21 卡方分布检验计算结果和相应的p值对专业的满意度卡方52.473adf4渐近显著性0.000第三步,作出结论,因为p=0.000,小于0.01,可以拒绝原假设,接受备择假设认为学生对专业的满意程度不服从离散的均匀分布。7、回归分析。(1)计算上月工资与平均学分绩点的相关系数并作假设检验。 解:第一步,假设如下:H0: H1: 第二步,通过SPSS计算,见表22 表22 上月工资与平均学分绩点

19、的相关性Pearson 相关性显著性(双侧)N平均学分绩点去年同月工资.763*0.000148 第三步,根据计算相关系数为0.763,P=0.000<0.01,所以可以拒绝原假设,在0.01水平上二者显著相关。(2)以上月工资为因变量,平均学分绩点为自变量做回归分析,分析模型的拟合效果和假设检验的结果。(第一次抽样无法做回归分析,需要重新抽样) 解:第一步,假设1,H0:回归模型无意义,H1:回归模型有意义 假设2,Ho;常量为 H1:常量不等于0 假设3,Ho:平均学分绩点的系数为0,H1:平均学分绩点的系数不等于0 第二步,通过SPSS分析,见表23、24、25表23 模型汇总模型

20、RR 方调整 R 方标准 估计的误差Durbin-Watson1.764a.584.581346.5812.163表24 回归模型模型平方和df均方FSig.1回归2.273E712.273E7189.216.000a残差1.622E7135120118.458总计3.894E7136 表25模型回归系数表模型BtSig.1(常量)-661.720269.159-2.458.015平均学分绩点1177.97185.63613.756.000 图6图7 图8 说明: 图6 为残差的直方图,图中残差的分布基本均匀 图7 为残差的正态P-P概率图,图中散点基本呈直线趋势,且并未发现异常点 图8 残差

21、是否有随标准化预测值增大而改变的趋势。从图中可以看出分布基本均匀,可以认为残差的方差是齐性的第三步,作出结论,从表23中可以看出此表为拟合模型的拟合优度的情况,其中R方为0.584,Durbin-Watson统计量为2.163,比较接近2,可以认为残差之间相互独立。从表24中可以到F=189.216 .P=0.000,可以认为这个回归模型是有统计意义的。从表25中可以得到模型的常量为-661.720,平均学分点的系数为1177.971,通过以上综合分析,最后得出的模型为: 月工资=-661.720+1177.971*平均学分绩点(3)以上月工资为因变量,平均学分绩点和性别为自变量做回归分析,分

22、析模型的拟合效果和假设检验的结果。 解:第一步,假设1,H0:回归模型无意义, H1:回归模型有意义 假设2,Ho;常量为 H1:常量不等于0 假设3,Ho:平均学分绩点的系数为0,H1:平均学分绩点的系数不等于0 第二步,通过SPSS计算可以得出表26、27、28、29,表26 模型汇总c模型RR 方调整 R 方标准 估计的误差Durbin-Watson1.914b.835.832219.0201.887表27 回归模型模型平方和df均方FSig.1回归3.252E721.626E7338.928.000残差6427926.05513447969.597总计3.894E7136表28 模型回归系数模型BtSig.1(常量)-137.317174.010-.789.431平均学分绩点1098.03054.40620.182.000性别-537.56637.633-

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论