下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、谈小学数学课堂有效提问的策略摘要:课堂提问是教师教学的重要手段和教学活动的有机组成部分,恰当地运用提问,可以集中学生注意力,点燃学生思维的火花,激发他们的求知欲望。也直接影响教学效果,有效提问更是培养学生独立人格和创新精神的重要途径。因此,课堂提问应立足于学生。关键词:问题要能激发学生的学习兴趣; 问题要符合学生的认知水平; 问题要能引发学生的质疑; 问题要有层次性; 问题要有开放性; 问题要有创新性。课堂提问是教师教学的重要手段和教学活动的有机组成部分,恰当地运用提问,可以集中学生注意力,点燃学生思维的火花,激发他们的求知欲望,为学生发现疑难问题、解决疑难问题提供桥梁和阶梯,引导他们一步步登
2、上知识的殿堂。提问是否得法,引导是否得力将直接影响教学效果;课堂提问更是培养学生独立人格和创新精神的重要途径,是开启学生智慧之门的钥匙。而当前的课堂教学中提问存在很多问题。如提问没有明确目的,不考虑学生的年龄特点与认知水品,满堂灌变为满堂问;提问没有层次性,难易问题无阶梯;提问对象只集中几个优生,而不顾及后进生,从而不能充分调动各类学生思考的积极性;过分关注教学进度,只注重结论,排斥求异思维,忽视思维过程。有的教师还一心期望学生的回答与教师或书本的答案完全一致,而很少问为什么,从而不能发现学生的思维缺陷,错过了塑造学生思维的时机,也难以提高学生的思维水平。因此,课堂提问的有效性,值得每位数学教
3、师认真研究、探讨。一、问题要能激发学生的学习兴趣课堂提问要讲究明确的目的,提问必须要为教学服务,备课要考虑提问的目标。是为了引课?还是为了前后联系新旧知识?或其他目的。课堂提问要尽可能目标明确,有实际意义。如六年级的用数对确定位置一课。为了引课,激起学生兴趣。我创设这样一个情境,六(3)班开家长会,老师请家长坐在自家孩子的位置上,出示班级座位图,圈出小明的位置(第5列,第4行),问题:如果你是小明准备怎样描述小明的位置,才能使家长既准确又快速地找到位置?生1答略、生2答略、生3答略同是小明的位置,却有如此多的方法描述,这样不简洁,又麻烦,还让人容易混淆,你有好的建议吗?生1答略、生2答略、生3
4、答略。这时,我说同学们的建议太有价值了,怎样才能用统一的方式既准确又简明地描述小明的位置呢?今天,我们来学习确定位置。这样在创设学生熟悉的座位情境的基础上,通过一组提问激活学生已有的生活经验,调动学生的积极性,用自己的方式描述小明的位置,由于观察的角度不同,描述的方式也不一样,有的容易让人混淆,有的不简洁,交流后学生自然地产生统一的方式,从而达到引入新课的目的,也让学生学习起来兴趣盎然。二、问题要符合学生的认知水平学生的生活阅历,与老师不可同日而语,许多老师在设计问题时,比较多地“参考”了自己的人生体验,而忽略了学生年龄特点、认知水平,这就导致了许多在老师看来轻而易举就能解决的问题,学生却感到
5、无从下手,就像下文将要讲到的分数的初步认识的例子,其实是老师没有站在学生的角度去思考,所以老师设计问题应站在学生的角度,多考虑学生的年龄特点、认知水平和生活阅历等方面的因素,让学生思考有方向。前不久,我有幸执教了人教版三年级上册“分数的初步认识”一课,这是学生第一次接触分数,这一部分知识是在学生掌握了一些整数知识的基础上初步认识分数的含义,从整数到分数是数概念的一次扩展,无论在意义上,读写方法上以及计算方法上,分数和整数都有很大的差异,学生初次学习分数会感到困难。因此,开课前主要创设学生熟悉的现实情境,再通过动手操作帮助学生理解简单的分数。如:情境引入让2个小朋友先分4个苹果,平均每人分两个,
6、再分2瓶饮料,平均每人1瓶,最后分蛋糕,平均每人半个,从而引出分数。这样一步一步循序渐进,利用迁移规律,引导学生自己去感知、发现、主动去探索,让学生在探究中体会到分数就在周围的生活之中。为了让学生进一步理解,另一个环节,让学生动手折出长方形纸的。学生按要求折出后,我原来设计的问题是:“回顾一下,你是怎样得到的”?生甲:我是竖着对折的。生乙:我是横着对折的。生丙:我是斜着对折的。转来转去,学生始终没有离开怎么折,无论我怎么启发引导,就是说不出“把一张长方形纸平均分成2份,每份就是长方形的”。即使说不成这样,大概意思对也行呀!我心里有点着急,最后又让学生分组讨论也没有如愿。最后自己说出了结语,但当
7、时心里很不舒服。(因为学生没说出我心中理想的答案)下课后我想,为什么会出现这种情况,难道三年级的孩子对平均分不理解,对新知识真的出现衔接问题。面对学生这种状况,作为老师应怎样引导?我很无奈自己说出了自己想要的答案,还是我设计的问题本身让学生不知怎么回答。于是第2节课上平行班时,到了同样的环节,我变换问题,你折出的表示什么?这时有许多小手举得很高,我试着叫了一个学生。他答:“我把长方形纸平均分成2份,一份就是它的”。“谁再说一说折出的表示什么”?学生答得非常到位,给予肯定后,我反应过来原来是自己的提问本身是有“问题”的。前面第一节课,你是怎样得到的?这样提问学生自然理解的是注重怎样折的。那学生当
8、然回答要么竖着对折的,要么是横着对折的,要么是斜着折的。学生回答没一点问题。而我心中期盼的是说出分数的意义。其实,在平时的教学中,有多少次我们的问题,本身是有“问题”的,有时更糟糕的是学生面对我们的问题不知所云,我们还一味怪罪学生太笨,不会动脑筋思考,答非所问。这不是学生的问题,而是老师设计的问题有“问题”,没有从学生的思考的角度去考虑,哪些是有利于学生的理解与思考的?当学生答不上我们所期望的答案,总是迁怒于学生,越是这样上课心态越不好,更不利于教学。三、问题要能引发学生的质疑亚里士多德说“思维是从疑问和惊奇开始的”。有了质疑的习惯,学生就不再依赖于既有的方法和答案,力求通过自己独立思考、判断
9、,发现新问题和独特见解。例如:“圆柱的认识”一课,学生学习后已经知道“圆柱上、下两个圆面一样大”。我想学生真正理解了圆柱的特征了吗?为了引导学生对圆柱的认识进行质疑:我设计了这样的问题“上、下两个圆面一样大的就是圆柱体吗?”学生经过讨论并结合实际例子得出“腰鼓上、下两个圆面一样大,但它不是圆柱体”并说出了理由从而加深了对圆柱体特征的认识。通过从常处生疑,向细微处问难,这样既加深学生对所学知识的理解和掌握,又培养了学生质疑精神,掌握了质疑问难的方法,也提高了质疑,释疑的能力。四、问题要有层次性提问要紧密联系所学内容,有针对性和层次性,这样以求再次激发学生思维,促进学生深入探究、自主建构知识。当学
10、生思维遇到障碍、盼望柳暗花明的过程,这时教师如能抓住时机,针对学生思维过程中矛盾冲突,适时针对性提问、打开思路、促进问题的解决。例如:圆的面积的计算,大多学生已掌握怎样计算圆的面积后,再经过变式练习后,我出示了这样一道题“已知正方形的面积是17c求圆的面积?”由于学生求圆的面积时,必须知道半径或直径,但是此题圆中半径是正方形的边长,学生陷入了矛盾,到底哪个数的平方是17呢?有的学生开始求半径?怎么也找不到,这时我设计了这样的问题,图中圆的半径与正方形的面积有什么关系,这一问,学生思路马上受到启迪,圆的半径平方就是图中正方形的面积呀!求圆的面积只要3.14×17就行了。正是这一提问,帮
11、助学生突破了思维定势,让他们在百转千回中,峰回路转、柳暗花明。画龙点睛的提问也成就这节课的精彩。五、问题要有开放性。提问要具有开放性,有些问题的答案是可以明确的,也是唯一的。这样的问题,只要一个学生作出正确回答,其它学生就没有发言的机会了。这对于那些特别想发言又没有得到发言机会的学生来说,实在是个不小的打击,如果经常这样,他们就会对课堂发言失去兴趣,相反 提问具有一定的开放性,不仅增加学生发言机会,而且也有利于激发学习积极性,除此之外,开放性问题对于学生的思维品质的培养也有很重要的作用。因为数学教学的核心是“思维”的教学,而思维的发展与思维习惯、思维品质有很大的关系,事实也表明良好的思维品质决
12、定了认知效果,也影响着一个人的对问题的理解和解决。在教与学的互动中,一些有质量的开放性问题,对学生的思维训练,思维品质的培养有着相当重要的作用,它可以使学生的思维向广度和深度发展,成为学生自主发展的内驱力。例如:在一次数学兴趣课上,我提出这样一个有趣的问题,引导学生深入思考:把一个长方形截去一个角,还剩几个角?有些学生简单地认为,长方形共有4个角,截去一个角,还剩下3个角,其实不然,由于没有限定从哪一个位置去截,根据不同的截法,答案不是唯一的,可以引导学生进一步思考图1图2图3展示图1;还剩5个角,展示图2:还剩4个角,展示图3,还剩3个角。这样通过对开放性问题的探究,实现了学生对所学知识的深
13、化认知,见解独创、精辟,理解具有深刻性。思维的深刻性是思维品质的基础,它可以促进思维的准确性,揭示本质,让学生经历过程和审视结果,形成独特的视角,思维的层次又一次得到提升。六、问题要有创新性思维的创造性,是一种不囿于常规,而又合乎逻辑规则的全新的思维方式,培养学生创造性思维并具有思维独创性,教师除了要善于提供“鲜活的思维素材”外,首先自己要有强烈的创新意识,在这种强烈的创新意识的驱使下,设计出打破固有的思维模式,产生丰富想象力和独特新颖的解决问题的方法。例如:教学长方体的表面积计算时,我设计了这样一道题,一个长方体长是3m,宽是3 m,高是6m,求它的表面积?这样一道题再普通不过,全班学生几乎
14、都可以列出算式:(3×3+3×6+3×6)×2或3×3×2+3×6×4.在学生充分建立自信后,我适时问,这是一个较特殊的长方体,有没有更简捷方法呢?有的学生纳闷(长方体表面积公式知道了,用公式不就行了,还有啥方法?),有的学生开始沉思(特殊性)引导学生仔细观察图,很快有个学生举手了,列式3×3×10.请他说想法:长方体的底面积是3×3,上、下2个底面是2个3×3,一个侧面积是3×6.可以看做2个3×3,4个侧面积就是8个3×3,这样长方体的表面积
15、是10个3×3,也就是3×3×10。哇!还可以这样算呀!其它学生不由自主这样感叹。学生体验了数学的简洁与概括后,此时我因势利导:同学们刚才把表面积全转化成底面积,只能转化成底面积吗?给了学生一点思考的时间后,我真有那种静待花开的感觉。果然一会儿有学生答:一个底面积是半个侧面积,上下底面积等于1个侧面,长方体表面积就相当于5个侧面积,因此列式3×6×5,由此学生的思维又一次产生了飞跃,新颖的方法,缔造了思维的创造性。总而言之,数学课堂提问是一门科学,蕴含着很强的艺术性,如果我们设计问题时,去认真构建充分考虑学生,我们的提问就能使学生大胆想象,乐于思考,总会使学生产生跃跃欲试的冲动,那些思维的火花、智慧的灵感就喷博而出。课
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 工程建设项目招标合同样本
- 住宅室内设计施工合同
- 住宅建造合同模板
- 电梯设备安装与定期检修协议
- 上海市内销商品房出售合同
- 2024年个人土地交易合同模板
- 2024意外伤害赔偿协议书范例
- 影视广告制作合同
- 合伙协议与法律规定冲突时的解决途径
- 2024年技师合同书
- 无偿划转国有股权及资产的可行性论证报告(附无偿划转协议)
- 公务车司机年度工作总结 公务用车驾驶员个人总结
- 第二版《高中物理题型笔记》上册
- 上海市大学生安全教育(2022级)学习通课后章节答案期末考试题库2023年
- 苏轼生平及创作整理
- 柴油发电机组应急预案
- 语文《猜猜他是谁》教案
- 绘本:让谁先吃好呢
- 宽容待人正确交往中小学生教育主题班会
- 移动通信网络运行维护管理规程
- 龙头股战法优质获奖课件
评论
0/150
提交评论