版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、学习必备欢迎下载数学中考中容易错误、漏解的题型分析菱湖一中周培芬学生在解数学题时, 会产生这样或那样的错误. 有的计算出差错, 有的讨论不完整,有的曲解题意, 有的推理无据等等, 形形色色 , 五花八门。 本文就这方面的典型错误举例、剖析 .以供大家参考,力求今后在解题中尽量减少或避免不应有的错误。学生在考试中犯的错误有很多,而常犯的典型错误概括起来,可分为疏漏性错误、审题性错误、知识性错误、运算性错误、不良习惯错误等。一疏漏性错误:主要指在解题时,忽略了条件与结论间的依存关系,考虑不周,从而导致错误。近几年各省市的中考数学命题注意了对学生思维周密性的考查,可是许多学生在解题时往往只满足于求出
2、一解而导致解题不完整,出现漏解。剖析产生漏解的常见原因有:1思维定势干扰例:直角三角形的两边长分别为6 和8,那么这个三角形的外接圆半径等于_。例:在矩形ABCD中,有一点P, PA=3, PB=4, PC=5,求PD的长度。2忽视了数学的一些规定例:( 1) k 为何实数, 关于x 的方程kx22x30有实数根?( 2)关于x 的方程kx26x10 有两个不等实根,求k 的取值范围。3忽视图形的位置或形状( 1)点与圆的位置关系问题此类问题应考虑点在圆外和圆内两种情况例:一个已知点到圆周上的最大距离为m,最小距离为 n,则该圆的半径为( 2)有关弦与其所对的弧的关系和按点在优弧或劣弧上的问题
3、此类问题应考虑优弧、劣弧两种情况例:( 1)已知 O的半径是6cm, O的弦AB=63 cm,则弦AB所对的圆周角是度。( 2)若O是 ABC的外接圆,OD BC于 D,且 BOD=48°,则BAC=。( 3)若圆O的直径AB为2,弦AC为2,弦AD为3 ,则 COD为_。( 3)有关平行弦的问题学习必备欢迎下载此类问题应考虑两平行弦在圆心的同侧或异侧两种情况例:0 的半径为5,两条平行弦的长分别是6 和 8,这两条平行弦之间的距离是。( 4)有关两圆相切问题此类问题应考虑外切、内切两种情况。例:已知两圆半径分别是2cm或 5cm,当两圆相切时,圆心距是。( 2)设 R、 r 是两圆
4、半径, d 为圆心距, R2r 2d 22Rd ,则两圆的位置关系是。例:如图 9,在 10× 6 的网格图中(每个小正方形的边长均为1 个单位长), A 的半径为1, B 的半径为 2,要使 A 与静止的 B 内切,那么 A由图示位置需向右平移个单位长( 5)三角形高的问题此类问题要考虑三角形是锐角还是Rt 或是钝角三种情况。例:等腰三角形一腰上的高与腰之比为2,则顶角的度数等于。2( 6)等腰( Rt )三角形边的问题此类问题要考虑边为腰还是底,边为直角边还是斜边例:( 1)已知等腰三角形的两边分别是9 和 5,求此三角形的周长为( 2)已知 Rt 的两边是12 和 5,则此三角
5、形的面积为。( 3)为美化环境, 计划在某小区内用 30m2 的草皮铺设一块边长为 10m的等腰三角形绿地,请你求出这个等腰三角形绿地的另两边长。4忽视了比例线段之间的不同对应关系例:( 1)在直角梯形ABCD中, AB=7,AD=2,BC=3,如果边AB上的点 P、A、D 为顶点的三角形和以P、 B、 C 为顶点的三角形相似,那么这样的点有个( 2)已知梯形 ABCD中,AB CD,DA AB,CD=2,AB=3,AD=7,现要在 AD上求一点 P,使 PAB与 PCD相似,试确定点P 的位置为。5危险的“零”学习必备欢迎下载分式分母不为零: ((x 2)( x1)0 ,则 x=x 1零指数
6、的底数不为零:若 x22x2 ( x24x 3)0 ,则 x。一元二次方程的二次项系数不为零:关于 x 的方程 k 2 x 2(2k1) x 1 0两个不相等的实数根 x1、 x2,则 k 的取值范围为。正比例自变量系数不为零:反比例自变量系数不为零:y(m3) xm22 m 2是正比例函数, 则 m的值为。y(m1)xm2m 1是反比例函数, 则 m的值为。二次函数的二次项系数不为零:二次函数yk 2 x27x7 的图象和 x 轴有交点,则 k 的取值范围是。二次函数的二次项系数不为零: 二次函数yax4xa 12,2的最小值为则 a 的值是。二审题性错误:主要指审题不仔细、模糊不清、草率而
7、出现的错误。有的学生拿到试卷以后,匆匆一看便急于下笔,以致题目的条件与要求没有吃透,无法找到正确的解题思路,从而导致错误。只要耐心仔细地审题,准确地把握题目中的关键词与量,从中获取尽可能多的信息,才能迅速找准解题方法。例:(1)一组数据5,7,7,x 的中位数与平均数相等,则x 的值为 _。( 2)一次函数y=kx+b 的自变量的取值范围是3x6 ,相应函数值的取值范围是5 y 2 ,则这个函数的解析式为 _ 。例:在下图右侧的四个三角形中,不能由 ABC 经过旋转或平移得到的是()CBA(A)( B)(C)(D)又如:本次考试第23 题第( 3)小题,学生未审清题中条件,误认为相邻两边必和对
8、角线构成直角三角形,从而认定 CDA是直角,故想方设法证CAD=60°,CD受图形直观形象影响误认为E、 A、 B 三点共线。EBA学习必备欢迎下载三不良习惯错误:主要指平时养成的书写不规范、字迹潦草、理由不完整等不良习惯而造成的错误。 比如少做, 漏做,书写不符合要求, 不注意细节, 分式方程不检验,应用题不答等等。这类错误只要在平时练习时加以足够的重视,在考试时是完全可以避免的。例: 解方程 4x-3=5x+10.3x0,例:解不等式组:4x3x,并把解集在数轴上表示出来326又如:一些书写表达欠规范、缺训练,特别是几何证明题中,有的学生密密麻麻写了一整篇,就是没有踩到得分点上,
9、证第(2)问时不知道引用第(1)的结论,重新用其他方法证明, 有的符号运用混乱。作图题或添辅助线时,语言表达不规范更为突出,这提醒我们平时的教学中数学语言、文字语言、符号语言、逻辑语言、图形语言必须规范,给学生以正确的示范,让学生充分感受、熟悉熟练。四运算性错误:主要指由于粗心大意造成的运算错误,只要细心一点是完全可以克服的。1轻易约分例: a 为何值时,分式a2a2 无意义?a 24a32符号上的错误:马虎从事漏掉括号例:化简41的结果是。4 2m2m3通分时误去分母:思维定势混淆变形例:计算:x3x 2x1x14违背运算顺序:法则模糊错误计算例: 计算xx(xx) .2y2xyxy五知识性
10、错误:主要指基础知识掌握不准、记忆不清造成的错误,这需要平时多学习必备欢迎下载下功夫,靠考试时“临场发挥”是不行的。切记:数学不考死记硬背,但没有对基础知识的识记,将会寸步难行。1数学概念理解不透彻数学概念是运算、推理、证明的依据正确、透彻理解概念的目的在于应用数学概念,如果把正确理解概念作为“第一个台阶”,那么应用数学概念解题可以说是“第二个台阶”,从反馈情况来看,概念理解不准确往往是解题错误的直接原因例:氢原子的半径只有 0.00000000005 米,用科学记数法表示()(A) 5× 10-9( B) 5×10-10( C) 0.5 × 10-10(D) 5
11、× 10-112画蛇添足,背道而驰例:分解因式 ( x+4) 2+( x+4) ×(-8) 3. 偷换概念在命题的证明过程中,把不属于某一概念外延的事物误认为属于这一概念,从而误认为该事物具有此概念的某些属性,得出错误的证明,这就是犯了偷换概念的错误,也违反了同一律。这ME种错误在学生的证明经常出现。ABNG例:已知:如图, AB/CD,MG、HN分别为EGA、EHC的平分线,求证: GM/HNCD4公式不理解或方法不当导致运算错误H由于学生记忆各种运算法则,缺乏对算理的真正F理解,导致运算错误,且难以纠正,已成为“数学牛皮癣”统计显示,运算出现( x-2 )2 =x2-4
12、 以及( 3x+4y ) 2=9x2+16y 2 这样错误的人经常有在总复习中,学生在解题中出现错误是不可避免,教师针对错误进行系统分析是重要的,教师可以通过错误来发现教学中的不足,从而采取措施进行补救;错误从一个特定角度揭示了学生掌握知识的过程,是学生在学习中对所学知识不断尝试的结果,教师认真总结,可以成为学生知识宝库中的重要组成部分,使学生领略解决问题中的探索、调试过程,这对学生能力的培养会产生有益影响。要让学生养成编错题集的习惯,研究错题的习惯。学习必备欢迎下载为此提出以下几点建议,仅供参考一课前准备要有预见性预防错误的发生,是减少初中学生解题错误的主要方法。讲课之前,教师应预测到学生学
13、习本课内容时可能产生的错误,就能够在课内讲解时有意识地指出并加以强调,从而 有效地控制错误的发生。 例如:在讲解分式方程之前,要预见到去分母与通分,两者有可能混淆,因而要在引入新课前须准备一些分式化简的预备练习,帮助学生弄清两者的不同,避免产生混乱与错误。因此备课时, 要仔细研究教科书正文中的关键字眼、 例题后的注意、 小结与复习 中的应该注意的几个问题等,同时还要揣摸学生学习本课内容的心理过程,授业解惑,预先明了学生容易出错之处,防患于未然。如果学生出现问题而未查觉,错误没有得到及时的纠正,则遗患无穷,不仅影响当时的学习,还会影响以后的学习。因此,预见错误并有效防范能够为揭示错误、降低错误打
14、下基础。二课内讲解要有针对性在课内讲解时, 要对学生可能出现的问题进行针对性的讲解。对于容易混淆的概念,要引导学生用对比的方法,弄清它们的区别和联系。课内条件允许的话,可由个别学生分析解答例题,再由学生订正,教师予以总结。并给学生展示揭示错误、排除错误的手段,使学生会识别错误、改正错误。要通过课堂提问及时了解学生情况,对学生的错误回答,要分析其原因,进行针对性讲解,利用反面知识巩固正面知识。课堂练习是发现学生错误的另一条途径,出现问题,及时解决。总之,要通过课堂教学,不仅教会学生知识,而且要使学生学会识别对错,知错能改。三归纳类比总结规律初中数学中,不少数之间、形之间都存在着内在的规律,这些规
15、律需要按照一定的思想方法加以探求,归纳与类比就是其中重要的方法。归纳的方法是人们认识事物的一种重要方法,它是从特殊到一般的推理方法,当找到一般规律后,用它作指导,再去研究类似的问题。如:学习函数,我们往往是从四个方面来学习学习函数的定义,函数的图像,函数的性质,函数的应用。类比也是人们认识事物的一种重要方法。它是把某些相同的量或相似的量进行比较,从而找出它们之间的某种联系。在初中数学中,学习必备欢迎下载应用类比的地方很多。例如,全等三角形与相似三角形、一次函数、正比例函数与反比例函数等。四课后讲评要有总结性要认真分析学生作业中的问题,总结出典型错误,加以评述。通过讲评,进行适当的 复习与总结,
16、也使学生再经历一次尝试与修正的过程,增强识别、改正错误的能力。五多方面解决好纠错工作对于课堂上出现的错误,纠错要及时,特别是起始阶段的运算,要在黑板上充分暴露,错在哪里?众目睽睽之下, 特别是那些科学性错误, 要寻根刨底, 追溯错误的源头,做到“正本清源” 、“斩草除根” 当然,澄清错误的方式可以多样,课堂上通过学生帮助学生的方法来解决,往往印象是最深,对学生来说最有说服力,可以多角度寻找解决的方法有些问题的错误可以从“数”“形”两方面对此处理,发现其同工异曲之妙,有些问题的错误必要时可以回归原始的问题情景,让其感受错误之“荒谬” ,还“清白”于人间课外纠错可以通过作业面批,纠错本订正回收再批
17、改的方式,另外要注意的是纠错工作不可能一劳永逸,除了“持久战”还要不失时机来一点“短平快”六发挥“错解” 、“新解”的作用无论是学生的错误解法还是创新解法都是教师的一笔宝贵的教学资源, 散见在平时作业、练习、试卷的错误, 如果对其共性加以分析和讲解, 可以起到事半功倍的效果 研究学生的创新解法及其思考的过程,可以触摸到学生思维的灵感,可以教学相长,特别是一些貌似简单的或已有定论的问题,其内涵却是丰富的如果课堂上留给学生一定的时间思考、辨析,形成共识,学生学到的不仅仅是一种解题方法,更重要的是领略到数学的理性精神,对于一些别出心裁的想法和解法,要给予鼓励、欣赏,去寻找出其本质的东西,再追寻问题是否可以再推广、再发展,虽然课堂上要耽搁一点时间,但确实值得当学生遇到新的问题时,其解决问题的思路更开阔、更流畅,这样学生解题的错误会逐渐减少,再往后,教学的失误就会少一些针对这些情况,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 兼职协议的制定
- 借款合同书范例
- 建筑防水施工合作协议
- 股权赠与协议书范文
- 房屋改造协议范本
- 事业单位合同工协议范本
- 2024话费托收协议指南
- 房屋买卖合同中的争议解决途径和法律救济
- 商标权转让协议书范文
- 办公用品购买合同样本
- 2024-2025学年第一学期初二物理期中考试卷
- 员工技能竞赛方案
- 统编版2024-2025学年四年级语文上册期中素养测评基础卷 (含答案)
- 苏教版九年级上册劳动技术+第21课+垃圾分类与资源回收【课件】
- DB11T 1359-2016 平原生态公益林养护技术导则
- 江苏省南京市六校联考2024-2025学年高一上学期期中考试语文试题(无答案)
- 预防校园欺凌主题班会课件(共36张课件)
- 公关服务合同
- 芯片基础知识单选题100道及答案解析
- (新版)征信知识竞赛基础题库(500题)
- 《幼儿园中班第一学期家长会》 PPT课件
评论
0/150
提交评论