版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、极坐标及极坐标方程的应用1.极坐标概述第一个用极坐标来确定平面上点的位置的是牛顿。他的流数法与无穷级数,大约于1671年写成,出版于1736年。此书包括解析几何的许多应用,例如按方程描出曲线,书中创见之一,是引进新的坐标系。瑞士数学家J.贝努力利于1691年在教师学报上发表了一篇基本上是关于极坐标的文章,所以通常认为J.贝努利是极坐标的发现者。J.贝努利的学生J.赫尔曼在1729年不仅正式宣布了极坐标的普遍可用,而且自由地应用极坐标去研究曲线。 在平面内建立直角坐标系,是人们公认的最容易接受并且被经常采用的方法,但它并不是确定点的位置的唯一方法。有些复杂的曲线用直角坐标表示,形式极其复杂,但用
2、极坐标表示,就变得十分简单且便于处理,在此基础上解决平面解析几何问题也变的极其简单。通过探究极坐标在平面解析几何中的广泛应用,使我们能够清楚的认识到,用极坐标来解决某些平面解析几何问题和某些高等数学问题比用直角坐标具有很大的优越性,故本文对其进行了初步探讨。 国内外研究动态,不仅在数学理论方面,很多学者对极坐标以及极坐标方程做了深入探究,而且在如物理、电子、军事等领域,很多学者对极坐标也有较深的研究。由此看来,极坐标已应用到各个领域。1.1 极坐标系的建立在平面内取一个定点,叫作极点,引一条射线,叫做极轴,再选定一个长度单位和角度的正方向(通常取逆时针方向)。对于平面内任意一点,用表示线段的长
3、度,表示从到的角度,叫点的极径,叫点的极角,有序数对就叫点的极坐标。这样建立的坐标系叫极坐标系,记作若点在极点,则其极坐标为=0,可以取任意值。 图1-1 图1-2 如图1-2,此时点的极坐标可以有两种表示方法:(1) 0, (2) 0, 同理,也是同一个点的坐标。又由于一个角加后都是和原角终边相同的角,所以一个点的极坐标不唯一。但若限定, ,那么除极点外,平面内的点和极坐标就可以一一对应了。1.2 曲线的极坐标方程在极坐标系中,曲线可以用含有这两个变数的方程来表示,这种方程叫曲线的极坐标方程。求曲线的极坐标方程的方法与步骤:1°建立适当的极坐标系,并设动点的坐标为;2°写
4、出适合条件的点的集合;3°;4°化简所得方程;5°证明得到的方程就是所求曲线的方程。三种圆锥曲线统一的极坐标方程: 图1-3过点作准线的垂线,垂足为,以焦点为极点,的反向延长线为极轴,建立极坐标系。设是曲线上任意一点,连结,作,垂足分别为那么曲线就是集合.设焦点到准线的距离,得 即 这就是椭圆、双曲线、抛物线的统一的极坐标方程。其中当时,方程表示椭圆,定点是它的左焦点,定直线是它的左准线。时,方程表示开口向右的抛物线。时,方程只表示双曲线右支,定点是它的右焦点,定直线是它的右准线。若允许,方程就表示整个双曲线。1.3 极坐标和直角坐标的互化把直角坐标系的原点作为极
5、点,轴的正半轴作为极轴,并在两种坐标系中取相同的长度单位,设是平面内任意一点,其直角坐标,极坐标是,从点作,由三角函数定义,得.图1-4进一步有 注:在一般情况下,由确定角时,可根据点所在的象限取最小角。2 极坐标在平面解析几何中的应用2.1极坐标法求到定点的线段长度解析几何中涉及到某定点的线段长度时,可以考虑利用极坐标法求解。但是绝大多数解析几何问题中题设条件是以直角坐标方程形式给出的,在求解过程中运算繁琐复杂,将此类问题转化为用极坐标方程求解,十分简洁,收到良好的效果。巧设极点,建立极坐标系是解决问题的关键。2.1.1以定点为极点如果题设条件与结论中,涉及到过某定点的线段长度问题,应该取该
6、点为极点,先将直角坐标原点移动到点,施行平移公式、直角坐标与极坐标互化公式,化普通方程为极坐标方程求解。例1 设等腰的顶角为,高为,在内有一动点,到三边 的距离分别为,并且满足关系,求点的轨迹。图2-1解: 如图2-1所示,以为极点,的平分线为极轴,建立极坐标系,设点极坐标为,则由得 化简得 化成直角坐标方程为 这是以为圆心,以为半径的圆,所求的轨迹是该圆在等腰内部的部分。 2.1.2以原点为极点如果题设条件或结论中涉及到直角坐标系原点的线段长度时,应选取原点为极点,应用互化公式,将直角坐标方程转化极坐标方程求解。例2 已知椭圆,直线:,是上一点,射线交椭圆于,又点在上,且满足,当点在上移动时
7、,求点的轨迹方程,并说明轨迹是什么曲线。解: 如图2-2所示,以为极点,为极轴,建立极坐标系。则由互化公式知椭圆的极坐标方程为 (1)直线的极坐标方程为 (2) ,则由(1)式知 由(2)式知又,有所以 即 点的轨迹是以为中心,长轴、短轴分别为且长轴平行与轴的椭圆,去掉坐标原点。图2-22.1.3以焦点为极点 凡涉及圆锥曲线的焦半径或焦点弦长度的问题,应选取焦点为极点(椭圆左焦点,双曲线右焦点),应用圆锥曲线统一的极坐标方程求解。例3 设为抛物线的顶点,为焦点,且为过的弦。已知。图2-3解: 如图2-3所示,以为极点,的反向延长线为极轴,建立极坐标系。则抛物线的极坐标方程为 于是 2.2 极坐
8、标简解与角有关的解析几何题含有已知角或公共顶点的一类解析几何题,运用极坐标系(或化直角坐标系为极坐标系)进行解题,常可避繁就简,化难为易,达到事半功倍的效果。下面分类举例说明。2.2.1含有已知角,角顶点为极点例4 已知在的两边上,=,的面积为8,求的中点的轨迹方程。图2-4解:以为极点,为极轴,建立极坐标系,如图2-4所示,设,则 即 (1) 因为 所以 (2) (3)得 (4)(1)代入(4)并化简,得即为所求。2.2.2含有已知角,坐标轴平移,化角顶点为极点例5 已知曲线:,顶点(2,0),点是上的动点,是以为斜边的等腰直角三角形,顶点按顺时针排列,为坐标原点,求的最大值及点的坐标。图2
9、-5解: 曲线化为:,以点为新坐标系原点,则曲线为 以点为极点,轴的正方向为极轴,建立极坐标系。如图2-5所示,则曲线为 (1)设,则 (2)(2)代入(1)得 即 所以点的轨迹方程为 即 (3)故当过(3)的圆心时,的最大值为,此时点的坐标为.2.3 极坐标法证明几何定理在平面几何证明中,极坐标法是一种重要的方法,应用十分广泛,下面以部分平面几何中著名定理为例,谈谈极坐标法在证明中的应用。2.3.1应用圆心是,半径是的圆的方程来证明例6 求证:圆内接四边形两组对边乘积的和等于两条对角线的乘积(托列迷定理)。证明:如图2-6,以为极点,的延长线为极轴建立极坐标系。设圆的半径为, 则:. 、三点
10、都在上, 另由正弦定理得 图2-62.3.2应用极点在圆上,圆心为的方程证明例7 自圆上一点引三弦,并以它们各自为直径画圆。求证:所画三圆的其它三交点共线(沙尔孟定理)。图2-7证明:如图2-7 ,分别是的直径,分别是的交点,以为极点,的延长线为极轴建立极坐标系,为简便计,设,极轴与的交角分别为,则所以 (1) (2) (3)设,则由(1)、(2)得 取,得,代入(1)中,得.点坐标为.同理应用轮换得点坐标为,点坐标为.显然三点坐标满足法线式方程故三点共线,命题获证。2.3.3应用圆的极坐标方程、两点或直线方程和法线式方程证明例8 求证:三角形外接圆上任一点在三边上的射影共线(西摩松定理)。图2-8证明:如图2-8,以为极点,的延长线为极轴建
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 单位管理制度呈现大合集人员管理十篇
- 2024年城管督查个人总结
- 寒假自习课 25春初中道德与法治八年级下册教学课件 第三单元 第五课 第1课时 根本政治制度
- 建筑工程行业安全管理工作总结
- 2011年高考语文试卷(大纲版全国Ⅱ卷)(空白卷)
- 化妆品行业销售工作总结
- 小学数学教学计划18篇
- 2023年项目部治理人员安全培训考试题含下载答案可打印
- 2023年-2024年项目部安全培训考试题答案往年题考
- 竞业限制协议书三篇
- 《人员素质测评理论与方法》电子版本
- 61850基础技术介绍0001
- 陶瓷色料的技术PPT课件
- 幼儿园食品安全工作计划四篇
- 课程设计YA32-350型四柱万能液压机液压系统设计
- (精心整理)系动词练习题
- 体彩排列五历史数据
- 中国工业数据库介绍
- 弱电智能化设计服务建议书(共35页)
- 中国银监会关于规范中长期贷款还款方式的通知
- 通信工程外文文献(共12页)
评论
0/150
提交评论