版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、精选优质文档-倾情为你奉上二次根式专题知识点1式子(a0)叫做二次根式1、 下列各式 是二次根式的是 2、x为怎么样的值时,下列各式在实数范围内有意义 知识点 2最简二次根式同时满足:被开方数的因数是整数,因式是整式(分母中不含根号);被开方数中含能开得尽方的因数或因式这样的二次根式叫做最简二次根式1、下列式子中是最简的二次根式的是: 2、(1)是整数,求自然数的值是 是 知识点3同类二次根式 几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式就叫同类二次根式1、若与是同类二次根式,则 2、若与是同类二次根式,则= 知识点4二次根式的性质()2=a(a0); =a=;1、化简=
2、_2、若<0,化简3、要使有意义,则x的取值范围是 4、若为实数,且,则的值为_5、若,求n的取值范围 知识点5分母有理化及有理化因式把分母中的根号化去,叫做分母有理化;两个含有二次根式的代数式相乘,若它们的积不含二次根式,则称这两个代数式互为有理化因式1、已知:,试求的值2、a b知识点6二次根式的运算=·(a0,b0);(b0,a>0)1、 2、3、 4、一元二次方程知识点1一元二次方程的判断标准:(1)方程是整式方程(2)只有一个未知数(一元)(3)未知数的最高次数是2(二次) 三个条件同时满足的方程就是一元二次方程1、下面关于x的方程中:ax2+bx+c=0;3x
3、2-2x=1;x+3=;x2-y=0;(x+1)2= x2-1一元二次方程的个数是 .2、若方程kx2+x=3x2+1是一元二次方程,则k的取值范围是_3、若关于x的方程是一元二次方程,则k的取值范围是_4、若方程(m-1)x|m|+1-2x=4是一元二次方程,则m=_知识点 2一元二次方程一般形式及有关概念一般地,任何一个关于x的一元二次方程,经过整理,都能化成一元二次方程的一般形式,是二次项,为二次项系数,bx是一次项,为一次项系数,为常数项。注意:二次项、二次项系数、一次项、一次项系数、常数项都包括前面的符号1、将一元二次方程化成一般形式为_,其中二次项系数=_,一次项系数b=_,常数项
4、c=_知识点3完全平方式1、说明代数式总大于2、已知,求的值.3、若x2+mx+9是一个完全平方式,则m= ,若x2+6x+m2是一个完全平方式,则m的值是 。若是完全平方式,则= 。知识点4整体运算1、已知x2+3x+5的值为11,则代数式3x2+9x+12的值为 2、已知实数x满足则代数式的值为_知识点5方程的解1、已知关于x的方程x2+3x+k2=0的一个根是x=-1,则k=_ _2、求以为两根的关于x的一元二次方程 。知识点6方程的解法 方法:直接开方法;因式分解法;配方法;公式法;十字相乘法;关键点:降次1、直接开方解法方程 2、用配方法解方程 3、用公式法解方程 4、用因式分解法解
5、方程 5、用十字相乘法解方程 知识点7一元二次方程根的判别式:1、 关于的一元二次方程. 求证:方程有两个不相等的实数根2、若关于的方程有两个不相等的实数根,则k的取值范围是 。3、关于x的方程有实数根,则m的取值范围是 知识点8韦达定理(a0, =b2-4ac0)使用的前提:(1)不是一般式的要先化成一般式;(2)定理成立的条件1、 已知方程的一个根为x=3,求它的另一个根及m的值。2、 已知的两根是x1 ,x2 ,利用根于系数的关系求下列各式的值 3、已知关于x的一元二次方程x2(m+2)x+m22=0(1)当m为何值时,这个方程有两个的实数根(2)如果这个方程的两个实数根x1,x2满足x
6、12+x22=18,求m的值知识点9一元二次方程与实际问题1、 病毒传播问题2、 树干问题3、 握手问题(单循环问题)4、 贺卡问题(双循环问题)5、 围栏问题6、 几何图形(道路、做水箱)7、 增长率、折旧、降价率问题8、 利润问题(注意减少库存、让顾客受惠等字样)9、 数字问题10、折扣问题旋转知识点1旋转:在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转,这个定点称为旋转中心,转动的角称为旋转角.旋转三要素:旋转中心、旋转方向、旋转角度1、如图,D是等腰RtABC内一点,BC是斜边,如果将ABD绕点A按逆时针方向旋转到ACD的位置,回答下列问题:(1)旋转中心
7、为 ,旋转角度为 度(2)AD D的形状是 。2、16:50的时候,时针和分针的夹角是 度 知识点2旋转的性质:1、图形中的每一点都绕着旋转中心旋转了同样大小的角度;2、每一对对应点到旋转中心的距离相等;3、每一对对应点与旋转中心的连线所成的夹角为旋转角;4、旋转只改变图形的位置,旋转前后的图形全等;1、如图,可以看作是由绕点顺时针旋转角度得到的若点在上。(1)求旋转角大小;(2)判断OB与的位置关系,并说明理由。AOB 2、将直角边长为5cm的等腰直角ABC绕点逆时针旋转后得到,则图中阴影部分的面积ACB是多少?3、如图,在中, . 在同一平面内, 将绕点旋转到的位置, 使得, 求 的度数。
8、4、如图6,四边形是边长为1的正方形,点、分别在边和上,是由 逆时针旋转得到的图形。(1)旋转中心是点_;(2)旋转角是_度,=_度;(2)若,求证.并求此时的周长.图65、ABC中,BAC90°,P是ABC内一点,将ABP绕点A逆时针旋转一定角度后能与ACQ重合,AP3.(1)求APQ的面积;(2)判断BQ与CQ的位置关系,并说明理由。6、如图,将正方形ABCD中的ABD绕对称中心O旋转至GEF的位置,EF交AB于M,GF交BD于N请猜想BM与FN有怎样的数量关系?并证明你的结论7、如图,在RtABC 中,D、E是斜边BC 上 两点,且DAE=45°,将绕点顺时针旋转90
9、后,得到,连接 ,证明 8、如图(1),点O是线段AD的中点,分别以AO和DO为边在线段AD的同侧作等边三角形OAB和等边三角形OCD,连结AC和BD,相交于点E,连结BC(1)求AEB的大小;(2)如图(2),OAB固定不动,保持OCD的形状和大小不变,将OCD绕着点O旋转(OAB和OCD不能重叠),求AEB的大小.知识点3旋转对称:一个平面图形绕着某一定点旋转一定角度(小于周角)后能与自身重合,这样的图形叫做旋转对称图形,这个定点叫做旋转中心。1、如图,五角星的顶点是一个正五边形的五个顶点这个五角星可以由一个基本图形(图中的阴影部分)绕中心O至少经过_次旋转而得到, 每一次旋转_度2、如图
10、,点O是正六边形ABCDEF的中心,问此正六边形绕正六边形的中心O旋转_ _度能与自身重合。3、如图的图形旋转一定角度后能与自身重合,则旋转的角度可能是_ 知识点4中心对称和中心对称图形1、如图,下列4个数字有( )个是中心对称图形 A1 B2 C3 D42.下列图形中不是中心对称图形的是( )A、 B、 C、 D、知识点5作图1、网格旋转90°(注意旋转的方向),中心对称,关于原点对称。结合直角坐标系写出对称后坐标2、找出旋转对称中心(两条对应线段垂直平分线的交点),中心对称中心(两组对应点连线的交点)1、已知A(-1,-1),B(-4,-3)C(-4,-1) (1)作A1B1C1
11、,使它与ABC关于原点O中心对称; 写出A1 ,B1, C1点坐标; (3)将ABC绕原点O逆时针旋转90º后得到A3B3C3, 画出A3B3C3,并写出A3,B3,C3的坐标2、如图,网格中有一个四边形和两个三角形 (1)请你画出三个图形关于点O的中心对称图形;(2)将(1)中画出的图形与原图形看成一个整体图形,请写出这个整体图形的对称轴有 条;这个整体图形至少旋转 度与自身重合知识点6旋转割补法如图,四边形ABCD中,BAD=C=90º,AB=AD,AEBC于E,若线段AE=5,求(提示:将四边形ABCD割补为正方形)知识点7关于原点对称填空:点A(2,1)关于x轴的对
12、称点为A( , );点B(1,3)与点B(1,3)关于 的对称。C(4,2)关于y轴的对称点为C( , );点D(5,0)关于原点的对称点为D( , )。圆【考点1】和圆有关的概念(1)等弦对等圆心角( )(2)在同圆或等圆中,等弦对等圆心角( ) (3)等弧对等弦( ) (4)等弦对等弧( ) (5)等弧对等圆心角( ) (6)直径是圆的对称轴( )【考点2】垂径定理及其推论如果一条直线满足(1)过圆心 (2)垂直弦 (3) 平分弦 (4)平分弧(优弧和劣弧) (5)平分圆心角 知之其中两个条件可以推出三个 (知二求三)特别:当选择过圆心和平分弦时,必须强调该弦不是直径。(1)平分弦的直径垂
13、直于弦. ( ) (2) 垂直于弦的直径平分弦. ( )1、如图,O直径AB和弦CD相交于点E,AE=2,EB=6,DEB=30°,求弦CD长2、如图,O 中,OE弦AB于E,OF弦CD于F,OE=OF,(1)求证:ABCD (2) 如果AB>CD,则OE OF 3如图所示,污水水面宽度为60 cm,水面至管道顶部距离为10 cm,问修理人员应准备内径多大的管道?4、已知ABC中,C=90°,AC=3,BC=4,以C为圆心,CA为半径画圆交AB于点D,求AD的长【考点3】弧、弦、圆心角、圆周角之间的关系:(举一反三)在同圆和等圆中,等弧对等弦对等角(包括圆心角和圆周角
14、)1.如图,在O中,C、D是直径AB上两点,且AC=BD,MCAB,NDAB,M、N在O上 求证:=(连接MO,NO ,利用全等求证MOC=NOD,等角等弧)2、如图15,AB、CD是O的直径,DE、BF是弦,且DE=BF,求证:D=B。3如图,O中,AB为直径,弦CD交AB于P,且OP=PC,求证:=3 (连接OC、OD,外角,圆心角证弧)4AB是O的直径,C是弧BD的中点,CEAB,垂足为E,BD交CE于点F(1)求证:;(2)若,O的半径为3,求BC的长 【考点4】:直径所对的圆90°1.已知ABC中,AB=AC,AB为O的直径,BC交O于D,求证:点D为BC中点 【考点5】知
15、识点(4)圆内接四边形对角互补 1、如图,AB、AC与O相切于点B、C,A=40º,点P是圆上异的一动点,则BPC的度数是 【考点6】外接圆与内切圆相关概念三角形的外心是 三边垂直平分线 的交点,它到 三个顶点 的距离相等;三角形的内心是 三个内角平分线 的交点,它到 三边 的距离相等1、边长为6的正三角形的内切圆半径是_,外接圆半径是 2、如图,已知O是RtABC的内切圆,切点为D、E、F,C=90°,AC=3,BC=4,求该内切圆的半径。3、如图,O内切于ABC,切点为D、E 、F,若B=50°, C=60°,连接OE、OF、DE、DF,则EDF等于
16、 【考点6】与圆有关的位置关系 画圆与圆位置关系的数轴【考点7】切线的性质切线性质定理:圆的切线垂直于 过切点 的半径4、如图,AB是O的直径,C为O上的一点,AD和过点C的切线互相垂直,垂足为D,求证:AC平分DAB。【考点8】切线的证明(两种方法)1、 已知圆上一点 “连半径,证垂直”2、 没告诉圆与直线有交点 “作垂直,证半径”。1、如图,AB是O的直径,O过BC的中点D,DEAC于E,求证:DE是O的切线。2、如图,AB=AC,OB=OC,AB切O于D,证明O与AC相切【考点9】切线长定理切线长相等,平分切线所成的夹角。图51、如图5,、是的切线,点、为切点,AC是的直径,图5(1)求
17、的度数;(2)若,求的长。3、如图,AB是O的直径,BC是一条弦,连结OC并延长OC至P点,并使PC=BC,BOC = 60o (1)求证:PB是O的切线。(2)若O的半径长为1,且AB、PB的长是一元二次方程x2+bx+c=0的两个根,求b、c的值。4、如图,P是O外一点,PA、PB分别和O相切于点A、B,是点C劣弧AB上任一点,过点C作O的切线,分别交PA、PB于点D、E 若PA=10,求PDE的周长5、如图(1)所示,直线与x轴相交于点A,与y轴相交于点B,点C(m ,n)是第二象限内任意一点,以点C为圆心的圆与x轴相切于点E,与直线AB相切于点F。所示,若C与y轴相切于点D,求C的半径r。【考点10】正多边形的计算1、 正n边形的每内角= 2、 正n边形的中心角=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 个人理财协议书
- 全面创新科技布局
- 墙体保温板采购合同(2篇)
- 2024招投标与合同管理法律顾问服务合同2篇
- 2024森林质量精准提升
- 2024年高速路改造工程:贵黄高速房屋拆迁补偿合同
- 车辆定点维修合同书协议范本模板
- 纯人工劳务分包合同
- 19只有一个地球说课稿-2024-2025学年六年级上册语文统编版
- 27故事二则说课稿-2024-2025学年四年级上册语文统编版
- 建筑施工现场农民工维权告示牌
- 《枪炮、病菌与钢铁》-基于地理视角的历史解释(沐风学堂)
- 酒店爆炸及爆炸物品紧急处理应急预案
- 2022年版物理课程标准的特点探讨与实施建议
- 《中外资产评估准则》课件第4章 国际评估准则
- 幼儿园班级安全教育活动计划表
- 《银行柜台风险防控案例汇编》银行柜台风险案例
- 展馆精装修工程施工方案(98页)
- 香港联合交易所有限公司证券上市规则
- (高清正版)JJF 1908-2021 双金属温度计校准规范
- (高清版)严寒和寒冷地区居住建筑节能设计标准JGJ26-2018
评论
0/150
提交评论