




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、问题问题1,什么样的图形是正多边形?,什么样的图形是正多边形?各边相等各边相等, ,各角也相等各角也相等的多边形是的多边形是正多边形正多边形. . 找一找找一找观察下列图形,从这些图观察下列图形,从这些图形中找出相应的正多边形形中找出相应的正多边形.正正n n边形:边形:思考:思考:各边相等的多边形是正多边形吗?各边相等的多边形是正多边形吗?为什么?各角相等的多边形呢?为什么?各角相等的多边形呢?2、我们曾经学过哪些正多边形?、我们曾经学过哪些正多边形? 想一想想一想1. 1. 矩形是正多边形吗矩形是正多边形吗? ?菱形呢菱形呢? ?正方形呢正方形呢? ?为为什么什么? ?矩形不是正多边形,因
2、为四条边不都相等矩形不是正多边形,因为四条边不都相等; ;菱形不是正多边形,因为菱形的四个角不都相等菱形不是正多边形,因为菱形的四个角不都相等; ;正方形是正多边形因为四条边都相等,四个角都相等正方形是正多边形因为四条边都相等,四个角都相等. .解答:解答:你知道正多边形与圆的关系吗?你知道正多边形与圆的关系吗?正多边形和圆的关系非常密切正多边形和圆的关系非常密切, ,只要把一个只要把一个圆圆分成分成相等相等的一些的一些弧弧, ,就可以作出这个圆的内接就可以作出这个圆的内接正多边形正多边形, ,这个圆就是这个正多边形的这个圆就是这个正多边形的外接圆外接圆. .ABCDEOABCDE 探索新知探
3、索新知如图如图, ,把把O分成分成相等的相等的5 5段弧段弧, ,依次连接依次连接各分点得到正五边形各分点得到正五边形ABCDE. . AB=BC=CD=DE=EA, A=B.ABCDEO同理同理B=C=D=E.又又五边形五边形ABCDE的顶点都在的顶点都在 O上上, 五边形五边形ABCDE是是O的内接正五边形的内接正五边形, , O是五边形是五边形ABCDE的外接圆的外接圆. .我们以我们以圆内接正五边形圆内接正五边形为例证明为例证明. .AB=BC=CD=DE=EABCE=CDA=3AB1 2 3456ABCDEO你能作出正五边形的内切圆吗?你能作出正五边形的内切圆吗? 探索新知探索新知
4、ABCD正多边形每一边所对的正多边形每一边所对的圆心角圆心角叫叫做做正多边形正多边形的的中心角中心角(即(即AOB )我们把一个正多边形的我们把一个正多边形的外接圆(内切圆)外接圆(内切圆)的的圆心圆心叫做这个叫做这个正多边形正多边形的的中心中心(即(即点点O)外接圆外接圆的的半径半径叫做叫做正多边形正多边形的的半径半径(即即OA)中心到正多边形的一边的中心到正多边形的一边的距离距离叫做叫做正多边形正多边形的的边心距边心距(内切圆(内切圆的半径、即的半径、即OM)O中心角中心角半径半径R边心距边心距rABCDEFM 概念学习概念学习新课讲解新课讲解中心中心半径半径中心角中心角边心距边心距正多边
5、形中的有关概念:正多边形中的有关概念:既是外接圆的圆心,也是内切圆的圆心既是外接圆的圆心,也是内切圆的圆心ABCDEOM)边心距()边心距(面积,边心距)(rnarLSraR2121222EFCD.n360中心角nBOGAOG180边心距边心距OG把把AOB分成分成2 2个个全等的直角三角形全等的直角三角形设正多边形的边长为设正多边形的边长为a, ,半径为半径为R, ,它的周长为它的周长为L=na. .RaEFCD.连接连接OA,由垂径定理(运用圆的有关知识)得,由垂径定理(运用圆的有关知识)得ABAM21nnAOM1803602121中心角.Rt222AMOMOAAOM中,有在 中心角一半
6、边长一半 半径R 边心距r M C O 探索新知探索新知603180336021213中心角时,当AOMn454180436021214中心角时,当AOMn306180636021216中心角时,当AOMn 边心距r 半径R 60 O M CA 边心距r 半径R 30 M C OA 边心距r 半径R 45 O M CA 探索新知探索新知nn1802)(n360 同步练习同步练习你能用以上方法画出正四边形、正你能用以上方法画出正四边形、正五边形、正六边形吗?五边形、正六边形吗?ABCDOABCDEOOABCDEF907260 探索新知探索新知你能尺规作出正十二边形、五角星吗你能尺规作出正十二边形
7、、五角星吗 探索新知探索新知小结:画正多边形的方法小结:画正多边形的方法课时21、正方形、正方形ABCD的外接圆圆心的外接圆圆心O叫做叫做正方形正方形ABCD的的2、正方形、正方形ABCD的内切圆的半径的内切圆的半径OE叫做叫做正方形正方形ABCD的的ABCD.OE中心中心边心距边心距 同步练习同步练习例例. . 有一个亭子有一个亭子, ,它的地基半径为它的地基半径为4 m4 m的正六边形的正六边形, ,求地基的周长和面积求地基的周长和面积( (精确到精确到0.1 m0.1 m2 2).).解解: 如图由于如图由于ABCDEF是正六边形是正六边形,所以它的中心所以它的中心角等于角等于 ,OBC
8、是等边三角形,从而正是等边三角形,从而正六边形的边长等于它的半径六边形的边长等于它的半径.因此因此, ,亭子地基的周长亭子地基的周长l =46=24(m).OABCDEFRPr360606 例题讲解例题讲解利用勾股定理利用勾股定理, ,可得可得边心距边心距22422 3.r 亭子地基的面积亭子地基的面积211242 341.6(m ).22Slr在在RtOPC中中,OC=4, PC=4222BC ,OABCDEFRPr 例题讲解例题讲解1 1正八边形的每个内角是正八边形的每个内角是_度度. .1352 2如图,正六边形如图,正六边形ABCDEF内接于内接于O,则,则CFD的度数是(的度数是(
9、) A. 60 60 B. 45 45 C. 30 30 D. 22.5 22.5C 巩固练习巩固练习3 3如果一个正多边形绕它的中心旋转如果一个正多边形绕它的中心旋转9090就与就与原来的图形重合,那么这个正多边形是(原来的图形重合,那么这个正多边形是( ) A.正三角正三角形形 B.正方形正方形 C.正五边形正五边形 D.正六边形正六边形B 4 4已知正六边形的边心距为已知正六边形的边心距为 ,则它的,则它的周长是周长是_._. 312 巩固练习巩固练习O3x2xBA305 5如图,正六边形如图,正六边形ABCDEF的半径为的半径为2 2,以它,以它的中心的中心O为坐标原点,顶点为坐标原点
10、,顶点B、E在在x轴上,求轴上,求正六边形正六边形ABCDEF的各顶点的坐标的各顶点的坐标?O?F?E?D?C?B?A xyA(-1,?)3B(-2,0?)C(-1,?)3D(1,?)3E(2,0?)F(?1,?)3 巩固练习巩固练习GH6 6如图,有一圆内接正八边形如图,有一圆内接正八边形ABCDEFGH,若若ADE的面积为的面积为1010,则正八边形,则正八边形ABCDEFGH的面积为的面积为( ) ( ) A. 40 B .50 C. 60 D. 80 A. 40 B .50 C. 60 D. 80 BACDEFGHA 巩固练习巩固练习OM7 7边长为边长为6 6的正三角形的半径是的正三
11、角形的半径是_._.32?A?B?C?D?E?F?O8 8如图,如图,O的周长为的周长为 cm,cm,求以它的半求以它的半径为边长的正六边形径为边长的正六边形ABCDEF的面积的面积 62cm2327S 巩固练习巩固练习M300分别求出半径为分别求出半径为R的圆内接的圆内接正三角形,正方形正三角形,正方形的边长,边心距和面积的边长,边心距和面积.解:作等边解:作等边ABC的的BC边上的高边上的高AD,垂足为垂足为D连接连接OB,则,则OB=R,BC=a在在RtOBD中中 OBD=30,1.2RABCDO边心距边心距OD= BD=2a2aRRRaADBCSRaRRaOBODBD343)2(212
12、13:)21()2(222222解之得1.2RR2a即正三角形的边长为即正三角形的边长为 边心距为边心距为 面积为面积为 ? ? R343R31.2R 例题选讲例题选讲解:连接解:连接OB,OC 作作OEBC垂足为垂足为E, OEB=90 OBE= BOE=45在在RtOBE中为等腰直角三角形中为等腰直角三角形222BEOEOB222OEOB222OBOE 2222OEOBR边心距22222BCBERR边长2222ABCDSAB BCRR正方形ABCDOE 例题选讲例题选讲1.课本课本P107第第1题题2 33正多边形正多边形边数边数内内角角中心中心角角半半径径边边长长边心边心距距周周长长面面积积34612120 3 36 390 90 2284120 60 22126 3 当堂训练当堂训练 边心距r 半径R 60 O M CA 边心距r 半径R 30 M C OA 边心距r 半径R 45 O M CA601正多边形都是轴对称图形,一个正正多边形都是轴对称图形,一个正n边
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 好饿的小蛇操作课
- 阿坝职业学院《健身理论与指导》2023-2024学年第二学期期末试卷
- 2025年幼儿教育教学方案
- 陕西学前师范学院《医学细胞生物学A》2023-2024学年第二学期期末试卷
- 陕西省商洛市2025年高三下学期第二次模拟考试物理试题(2020吉林二模)含解析
- 陕西省延安市洛川县市级名校2025届初三5月联考化学试题试卷含解析
- 防震减灾馆建设
- 病死动物无害化处理规程培训
- 公共安全与应急管理科学技术-幻灯片1
- 陕西省西安市西电附中2025年高考第一次模拟考试生物试题含解析
- 临床经鼻高流量湿化氧疗患者护理查房
- 人工智能设计伦理(浙江大学)知到智慧树章节答案
- 2024年贵阳客运从业资格证app下载
- 咬合重建的修复治疗
- M7120型平面磨床电气控制
- 【数学】2021-2024年新高考数学真题考点分布汇
- 医疗科室人员排班制度
- 高中数学集合练习题160题-包含所有题型-附答案
- 财务审计服务方案投标文件(技术方案)
- 青岛市第十五届职业技能大赛技术文件-焊工(职工组)
- 电子化学品深度报告:受益半导体产业转移电子化学品迎发展良机
评论
0/150
提交评论