生化名词解释_第1页
生化名词解释_第2页
生化名词解释_第3页
已阅读5页,还剩27页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、_名词解释等电点 :在某一PH 的溶液中,氨基酸解离成阳离子和阴离子的程度和趋势相等,成为兼性离子,呈电中性,此时溶液的PH 称为该氨基酸的等电点。肽键 :蛋白质中前一氨基酸的-羧基与后一氨基酸的-氨基脱水形成的酰胺键。多肽链 :由许多氨基酸借肽键连接而形成的链状化合物。蛋白质分子的一级结构:蛋白质分子中,从N- 端到 C- 端的氨基酸排列顺序。蛋白质分子的二级结构:指蛋白质分子中某一肽链的局部主链空间结构。模体 :蛋白质分子中,可由2 个或 2 个以上具有二级结构的肽段在空间上相互接近协,形成一个特殊的空间构象,并具有相同的功能,称为模体。结构域 :分子量较大的蛋白质常可以折叠成多个结构较为

2、紧密且稳定的区域,并各行其功能,称为结构域。分子病 :由于 DNA 分子上基因的遗传性缺陷,引起 mRNA 异常和蛋白质合成障碍,导致机体结构和功能异常所致的疾病。协同效应 : 一个亚基与其配体结合后,能影响另一亚基与配体结合的能力。别构效应 : 蛋白质分子因与某种小分子物质(效应剂)相互作用而致构象发生改变,从而改变其活性的现象。蛋白质变性 :在某些理化因素作用下,蛋白质特定的空间构象被破坏,即从有序的空间结构变成无序的空间结构,从而导致其理化性质改变和生物学活性的丧失的现象。分子伴侣 :分子伴侣是细胞中一类保守蛋白质,可识别肽链的非天然构象,促进各功能域和整体蛋白质的正确折叠。细胞至少有两

3、种分子伴侣家族热休克蛋白和伴侣素。盐析 :将硫酸铵、硫酸钠和氯化钠等加入蛋白质溶液,使蛋白质溶液表面电荷被中和以及水化膜被破坏,导致蛋白质在水溶液中的稳定因素去除而沉淀。核酸的一级结构 :构成 RNA 的核苷酸和构成 DNA 的脱氧核苷酸自 5 端至 3端的排列顺序。核小体 :由 DNA 和 H1 、H2A 、H2B 、H3 、H4 的 5 种组蛋白构成。 2 分子的 H2A 、H2B 、H3 、 H4 构成核心, DNA 双螺旋分子缠绕在这一核心上形成核小体。开放阅读框 :从成熟的mRNA 的 5 端起的第一个AUG (即为起始密码子)至终止密码子之间的核苷酸序列。核酶 :细胞内具有催化功能

4、的一类小分子RNA ,具有催化特定RNA 降解的活性, 在 RNA 的剪接修饰中有重要作用。DNA 变性 :在某些理化因素的作用下,DNA双链互补碱基对之间的氢键断裂,双螺旋解开为单链,这种现象称为DNA 的变性。DNA 的增色效应 :DNA 变性时,由于更多的共轭双键得以暴露,A260 值随着增高,这种现象叫增色效应-可编辑修改 -_Tm 值:在解链过程中,紫外吸光度的变化值达到最大值的一半时所对应的温度叫解链温度用Tm 表示。核酸分子杂交 :两条不同来源的单链DNA ,或一条单链DNA ,一条 RNA ,或两条 RNA ,只要它们之间存在一定的碱基互补配对关系,就可以形成一个杂合双链,此过

5、程称杂交。全酶 :酶蛋白与辅助因子结合在一起称为全酶。酶的活性中心:酶分子中能与底物特异性的结合并催化底物转化为产物的具有特定三维结构的区域。酶的活性中心:酶分子中能与底物特异性结合并催化底物转变为产物的具有特定三维结构的区域同工酶 :指催化的化学反应相同,而酶蛋白的分子结构、理化性质及免疫学性质不同的一组酶。酶的抑制剂 :凡是能够使蛋白质的活性下降而不引起酶变性的物质统称为酶的抑制剂别构调节 :体内一些代谢物可与可与某些酶的活性中心外的某个部位非共价可逆结合,引起酶的构象改变,从而改变酶的活性,酶的这种调节方式称为酶的别构调节。共价修饰 :酶蛋白肽链上的一些基团可在其他酶的催化下,与某些化学

6、基团共价结合,同时又可在另一种酶的催化下,去掉已结合的化学集团,从而影响酶的活性,酶的这种调节方式称为酶的共价修饰。糖酵解 :一分子葡萄糖在胞质中裂解成两分子的丙酮酸,是葡萄糖无氧氧化和有氧氧化的共同途径,称为糖酵解。柠檬酸循环 :是由草酰乙酸与乙酰 CoA 缩合成含三个羧基的柠檬酸开始的一系列酶促反应的循环过程。磷酸戊糖途径 :从糖酵解的中间产物葡糖 -6- 磷酸开始形成旁路,通过氧化、基团转移两个阶段生成果糖 -6- 磷酸和 3- 磷酸甘油醛,从而返回糖酵解的代谢途径。乳酸循环 :乳酸循环又叫 Cori 循环。肌肉糖酵解产生乳酸入血,再至肝合成肝糖原,肝糖原分解成葡萄糖入血至肌肉,再酵解成

7、乳酸,此反应循环进行,叫乳酸循环。糖异生 : 糖异生是指由非糖物质(乳酸、甘油、生糖氨基酸等)转变成葡萄糖或糖原的过程。巴斯德效应 :有氧氧化抑制糖无氧氧化的现象。脂蛋白 :是脂类在血液中的运输形式,由血浆中的脂类与载脂蛋白结合形成。载脂蛋白 :指脂蛋白中的蛋白质部分。脂肪动员 :储存在脂肪细胞内的脂肪在脂肪酶的作用下,逐步水解为脂肪酸和甘油,以供其他组织利用,此过程称为脂肪动员。脂解激素 :胰岛素,前列腺素 E2 等能对抗脂解激素的作用,降低激素敏感性脂肪酶活性,抑制脂肪动员的激素。必需脂肪酸 :指人体自身不能合成、必须由食物供给的脂肪酸,目前认为必需脂肪酸有三种,即亚油酸,亚麻酸及花生四烯

8、酸。-可编辑修改 -_酮体 :脂肪酸在肝内 -氧化产生的大量乙酰CoA ,部分转变为酮体, 包括乙酰乙酸, -羟丁酸,丙酮。生物氧化 :机体在进行有氧呼吸时,还原性电子载体通过一系列的酶催化和连续的氧化还原反应逐步失去电子,最终生成H2O 、 CO2 同时释放能量的过程,即为生物氧化。氧化呼吸链 :由递氢体和递电子体按一定排列顺序组成的链锁反应体系,它与细胞摄取氧有关,所以叫氧化呼吸链。氧化磷酸化 :代谢物脱下的氢, 经线粒体氧化呼吸链电子传递释放能量,使 ADP 磷酸化为 ATP的反应过程。底物水平磷酸化 :与脱氢反应偶联,直接将高能代谢物分子中的能量转移至ADP( 或 GDP) ,而生成

9、ATP( 或 GTP) 的过程称底物水平磷酸化。P/O 比值:指氧化磷酸化过程中,每消耗1/2 摩尔氧气所需磷酸的摩尔数,即所能合成ATP 的摩尔数。氮平衡 :每日氮的摄入量和排出量之间的关系。营养必需氨基酸 :体内需要而不能自身合成, 必须由食物提供的氨基酸。包括赖氨酸、 色氨酸、苯丙氨酸、苏氨酸、缬氨酸、亮氨酸、异亮氨酸、蛋氨酸。食物蛋白质的互补作用 : 营养价值较低的蛋白质混和食用,彼此间氨基酸可以得到相互补充,从而提高蛋白质的营养价值就称为蛋白质的互补作用.腐败作用 :未被消化的蛋白质及未被吸收的氨基酸在大肠下部受大肠杆菌的分解,此分解作用称腐败作用。氨基酸代谢库 :食物蛋白质经消化而

10、被吸收的氨基酸(外源性氨基酸 ) 与体内合成及组织蛋白质降解产生的氨基酸(内源性氨基酸)混在一起, 分布于体内各处,参与代谢, 称为氨基酸代谢库。一碳单位 :某些氨基酸在分解代谢过程中生成的含有一个碳原子的有机基团。嘌呤核苷酸的从头合成途径:利用磷酸核糖、氨基酸、一碳单位及CO2 等简单物质为原料,经过一系列酶促反应合成嘌呤核苷酸的过程。嘌呤核苷酸的补救合成途径:利用体内游离的嘌呤或者嘌呤核苷,经过简单的反应过程,合成嘌呤核苷酸的过程。生物转化作用 :机体对非营养物质进行代谢转变,使其水溶性提高,极性增强,以利于随胆汁或尿液排出体外的过程。胆汁 :胆汁是肝细胞分泌的液体, 储存于胆囊, 主要成

11、分是胆汁酸盐, 其他有胆色素、 胆固醇、磷脂等。初级胆汁酸 :在肝细胞以胆固醇为原料直接合成的胆汁酸。包括胆酸和鹅脱氧胆酸及其与甘氨酸和牛磺酸的结合产物。次级胆汁酸 : 由初级胆汁酸在肠道细菌作用下, 第 7 位羟基脱氧生成的胆汁酸。 包括脱氧胆酸和石胆酸及其与甘氨酸和牛磺酸的结合产物。-可编辑修改 -_胆汁酸的肠肝循环 : 重吸收的胆汁酸经门静脉入肝, 在肝细胞内, 游离的胆汁酸被重新转变成结合胆汁酸,与重吸收及新合成的结合胆汁酸一起随胆汁重新入肠。胆汁酸在肝和肠之间的这种不断循环过程称为胆汁酸的肠肝循环。黄疸 :胆红素为橙黄色物质, 由于胆红素代谢障碍, 过多的胆红素扩散进入组织造成组织黄

12、染,这一体征称为黄疸断裂基因 :与原核生物相比较,真核生物最突出的特点就是其编码序列不连续,称为断裂基因半保留复制 :分别以亲代DNA 的两条单链为模板,以4 种 dNTP 为原料,在DNA 聚合酶的催化下,按照碱基互补的原则合成一条新链的过程。中心法则 :遗传信息从DNA 向 RNA ,再传向蛋白质的规律。前导链 :在 DNA 复制过程中,沿着解链方向生成的子链DNA 的合成是连续进行的,这股链称为前导链。后随链 :模板被打开一段,起始合成一段子链,再打开一段,再起始合成另一段子链,这一不连续复制的链称为后随链。冈崎片段:DNA 复制时,沿着后随链的模板链合成新的不连续的DNA 片段,称岗崎

13、片段。逆转录 :以单链 RNA 为模板,以 4 种 dNTP 为原料,在 RNA 聚合酶的催化下,按照碱基互补的原则,合成 DNA 的过 程。DNA 损伤:指个别dNMP 残基或片段DNA 在构成、复制或表型功能的异常变化。转录 :以 DNA 的模板链为模板,以4 种 NTP 为原料,在DNA 指导的 RNA 聚合酶的催化下,按照碱基互补的原则,合成RNA 的过程。HnRNA : hnRNA是核内不均一RNA ,是真核细胞mRNA的前体,需经加工改造后,才能成为成熟的mRNA 。内含子和外显子: hnRNA中被间接去除的核酸序列称为内含子,而最终出现在成熟mRNA 分子中,作为模板指导蛋白质翻

14、译的序列称为外显子。S-D 序列 :各种 mRNA 的起始 AUG 上游约 813 核苷酸处,存在一段由49 个核苷酸组成的共有序列 -AGGAGG- ,可被 16S rRNA通过碱基互补而精确识别。这段序列被称为核糖体结合位点,也称S-D 序列。核糖体循环 :根据 mRNA 密码序列的指导,依次添加氨基酸从N 端向 C 端延伸肽链,直到合成终止的过程。多聚核糖体 :由多个核糖体结合在一条mRNA 链上同时进行肽链合成所形成的聚合物。信号肽 :各种新生分泌蛋白的N 端有保守的氨基酸序列称信号肽。信号序列 :所有靶向运输的蛋白质以及结构中都存在分选信号,可引导蛋白质转移到细胞的适当靶部位。这列序

15、列称为信号序列。抗生素 :可杀灭或抑制细菌药物,多来源于微生物。部分抗生素通过直接阻断细菌代谢或蛋白质生物合成而起抑菌作用的。-可编辑修改 -_基因表达 :基因转录及翻译的过程,也是基因所携带的遗传信息表现为表型的过程,包括基因转录成互补的RNA 序列,对于蛋白质编码基因mRNA 继而翻译成多肽链,并装配加工成最终的蛋白质产物。基因表达调控:细胞或生物体在接受内外环境信号刺激时或适应环境变化的过程中在基因表达水平上做出应答的分子机制。操纵子 :操纵子是原核基因转录调控的基本单位,由结构基因和调控序列组成。顺式作用元件 :真核生物中可影响自身基因表达活性的DNA 序列。通常是非编码序列。启动子

16、:真核基因启动子是RNA 聚合酶结合位点周围的一组转录控制元,包括至少一个转录起始点和一个以上的功能组件。增强子 :能增强启动子转录活性的DNA 序列沉默子 :沉默子是负性调控元件,当其结合特异蛋白因子时,对转录作用起阻遏作用。反式作用因子 :能够与顺式作用元件相互作用,反式激活另一基因转录的蛋白因子。信号转导分子 :细胞外的信号经过受体转换进入细胞内,通过细胞内一些蛋白质分子和小分子活性物质进行传递,这些能够传递信号的分子称为信号转导分子。受体 :是细胞膜上或细胞内能识别外源化学信号并与之结合的蛋白质分子,个别糖脂也具有受体作用。印迹技术 :是指将存在于凝胶中的生物大分子转移(印迹)于或直接

17、放在固定化介质上并加以检测分析的技术。探针 :指的是带有特殊可检测标记的核酸片段。它具有特定的序列,能够与待测的核酸片段互补结合。PCR :以拟扩增的 DNA 分子为模板,以1 对与模板互补的寡核苷酸片段为引物,在DNA 聚合酶作用下,依半保留机制沿模板链延伸直至完成2 条新链合成。 重复这一过程, 即可使目的 DNA片段得到扩增。基因组文库 :以 DNA 片段的形式贮存着某一生物的全部基因组DNA (包括所有的编码区和非编码区)信息。cDNA 文库:是包含某一组织细胞在一定条件下所表达的全部mRNA 经逆转录而合成的 cDNA序列的克隆群体,它以cDNA 片段的形式贮存着该组织细胞的基因表达

18、信息。基因工程 :在体外将目的DNA 片段与能自主复制的遗传元件连接,形成重组DNA 分子,进而在受体细胞中复制扩增,从而获得单一DNA 分子的大量拷贝。限制性核酸内切酶 :是一类核酸内切酶,能识别双链 DNA 分子内部的特异位点并裂解磷酸二酯键。载体 :是为携带目的外源DNA 片段,实现外源DNA 在受体细胞中的无性繁殖或表达有意义的蛋白质所采用的一些DNA 分子。质粒 :主要存在于细菌染色体外的、能自主复制和稳定遗传的DNA 分子,通常为环状双链的超螺旋结构。-可编辑修改 -_癌基因 :是基因组内正常存在的基因,其编码产物通常作为正调控信号,促进细胞的增殖和生长。癌基因的突变和表达异常是细

19、胞恶性转化的重要原因。原癌基因 :存在于生物正常的细胞基因组中的癌基因称为原癌基因.抑癌基因 :肿瘤抑制基因,是调节细胞正常生长和增殖的基因。基因诊断 :利用现代分子生物学和分子遗传学的方法技术,直接检测基因结构及其表达水平是否正常,从而对人体状态和疾病作出诊断的方法。基因治疗 :以改变人遗传物质为基础的生物医学治疗,即通过一定方式将人正常基因或有治疗作用的 DNA 片段导入人体靶细胞以矫正或置换致病基因的治疗方法。分子杂交 :不同的 DNA 片段之间, DNA 片段与 RNA 片段之间,如果彼此间的核苷酸排列顺序互补也可以复性,形成新的双螺旋结构。这种按照互补碱基配对而使不完全互补的两条多核

20、苷酸相互结合的过程称为分子杂交简答题1.蛋白质分离纯化的种类和方法透析:利用透析袋把大分子蛋白质与小分子化合物分开盐析:将硫酸铵,硫酸钠或氯化钠等加入蛋白质溶液,使蛋白质表面电荷被中和以及水化膜被破坏,导致蛋白质在水溶液中的稳定性因素去除而沉淀电泳:蛋白质在低于或高于其等电点的溶液中称为带电颗粒,在电场中能向正极或者负极方向移动。这种通过改变蛋白质在电场中游动而达到分离各种蛋白质的技术为电泳层析:分离,纯化蛋白质的重要手段。其中离子交换层析和凝胶滤过最为广泛超速离心法:既可以用来分离纯化蛋白质也可以用来测量蛋白质的分子量-可编辑修改 -_2.蛋白质二级结构分类及其特点蛋白质的二级结构是指蛋白质

21、分子中的一段肽键的局部结构。也就是该段主链骨架原子的相对空间位置。二级结构主要形式有螺旋,折叠,转角和无规卷曲。特点:螺旋:主链骨架围绕中心轴盘形成右手螺旋每上升一圈是3.6 个氨基酸残基,螺距为0.54nm相邻螺旋圈可以形成许多氢键侧链基团位于螺旋外侧折叠:若干条肽链或肽段平行或反平行排列成片所有肽键C=O,N-H形成氢键侧链基团分别交替位于片层上现房转角:多肽链 180 °回折部分,通常由四个氨基酸残基构成,借1,4 残基之间形成氢键维系无规卷曲:主链骨架无规则盘绕的部分3.DNF 双螺旋模型要点DNF 由两条多聚脱氧核苷酸链组成:围绕着同一个螺旋轴形成右手螺旋核糖和磷酸位于外侧

22、: DNF 双螺旋结构表面存在一个大沟,一个小沟DNF 双链之间形成了互补碱基对:GC 之间三个氢键,AT 之间两个氢键碱基对的疏水作用力和氢键共同维持着DNF 双螺旋结构的确定4.RNA 的种类,结构及其功能mRNA: 核内以 DNF 为模板合成得到的,然后转移至细胞质内真核生物mRNA 的 5 端有特殊帽结构,m7Gppp真核生物mRNA 的 3 端有特殊尾结构,polyA 尾mRNA 的碱基序列决定蛋白质的氨基酸序列tRNA : tRNA 中含有多种稀有碱基,作为反密码子可以识别mRNA其中含有茎环结构。二级结构酷似三叶草,三级结构成倒L 型tRNA 的 3 端有 CCA-OH 可连接氨

23、基酸羧基。rRNA :是细胞内含量最多的RNA ,构成核糖体 IncRNA :类似于 mRNA ,但序列中不存在开放阅读框hnRNA 成熟 mRNA 的前体scRNA :蛋白质内质网合成的信号识别体的组成成分5.tRNA 二级结构的基本特点-可编辑修改 -_tRNA 二级结构的基本特点:为三叶草结构,具有:四环:DHU 环、反密码环、T 环、可变环;四臂: DHU 臂、反密码臂、T 臂、氨基酸臂;一末端:3 CCA-OH末端6.酶促反应的特点酶对底物有极高的催化效率:能显著的降低活化能酶对底物有高度的特异性,即一种酶只能作用于一种或一类化合物,或一定化学键酶的活性和酶量具有可调节性酶具有不稳定

24、性:酶的化学本质主要是蛋白质。使蛋白质变性的因素往往会使酶失去活性7.具体说明酶的两种特异性绝对专一性:一种酶只能作用于专一的化学反应,生成一定特定结构的产物,称为绝对专一性,如脲酶仅能够催化尿素水解成二氧化碳相对转移性:一种酶作用于一类化合物或一种化学键,催化一类化学反应,底物不太严格的选择性,如各种水解酶类属于相对特异性8.温度对酶促反应的影响温度升高对速率有双重影响: 可以增加分子碰撞机会, 使反应速率增大 温度升高可加速酶辩形式或,使酶促反应速率变小温度对速度影响的表现:温度较低时, 速率随温度升高而增大达到某一温度时, 速率最大。使酶促反应速率达到最大的时候的反应温度称为酶的最适反应

25、温度9.简述 Km 和 Vm 的意义Km 值等于酶促反应速率达到最大反应速率一般时候的底物浓度Km 值是酶的特征常熟。与酶的结构,底物结构,反应环境PH ,温度和离子强度有关。与酶浓度无关Km 在一定调节下可以表示酶对底物的亲和力。Vmax 是酶被底物万全饱和时的反应速率10. 抑制剂的类型和作用机理凡能够使酶活性下降而不引起蛋白质变性的都称为酶的抑制剂不可逆性抑制剂:通过与酶活性中心的必需基团共价结合,使酶识货。这种抑制剂不能用超滤等方法予以除去可逆性抑制剂:可逆性抑制剂与酶非共价可逆性结合,使酶活性降低或者消失。用透析,超滤等物理方法可以除去,恢复酶的活性-可编辑修改 -_I 竞争性抑制剂

26、:抑制剂和酶的底物在结构上相似:Vmax 不变, Km 增大II 非竞争性抑制剂:与活性中心外的结合位点相结合。Km 不变, Vmax 降低III 反竞争性抑制剂:也是与酶活性中心外的结合位点相结合:Km , Vmax 均不变11. 酶原存在,激活的意义消化道蛋白酶以酶原形式分泌可避免胰腺的自身消化和细胞外基质蛋白受到蛋白酶的水解破坏,同时还能保证酶在特定环境和部位发挥催化作用。生理情况下,血管内凝血因子以酶原形式存在,不发生血液凝固,可以使血流畅通12. 同工酶和其临床意义同工酶是指催化相同的化学反应,而酶蛋白的分子结构,理化性质和免疫学性质不同的一组酶。临床意义:属同工酶的几种酶由于催化活

27、性有差异和体内分布不同,有利于体内代谢的调节同工酶的检测有助于对某些疾病的诊断和鉴别诊断13.1,25- 二羟维生素D3 的作用调节血钙水平。其与其他类固醇激素相似,在把细胞内与特异性核受体结合,进入细胞核,调节相关基因的表达。还可以通过信号转导系统影响钙离子通道开放影响细胞分化:肾外组织可以细胞可以生成。然后作用于多种受体。其对某些肿瘤细胞还有抑制增殖和促进分化的作用14. 磷酸吡哆醛的辅酶作用磷酸吡哆醛是多种酶的辅酶,参与氨基酸脱氨与转氨基作用,鸟苷酸循环,血红素合成和糖原分解。磷酸吡哆醛可以终止类固醇激素的作用15. 维生素 C 的作用和意义维生素 C 是一些羟化酶的辅酶,例如苯丙氨酸代

28、谢过程中,胆汁酸合成关键酶维生素 C 可作为抗氧化剂直接参与体内的氧化还原反应维生素 C 具有增强机体免疫力的作用16. 糖酵解的关键酶和调节磷酸果糖激酶1.别构激活剂有:AMP.ADP, 果糖 1,6- 二磷酸和果糖2,6- 二磷酸。果糖2,6-二磷酸是其最强的别构激活剂。ATP 对其有抑制作用丙酮酸激酶:果糖1,6- 二磷酸是丙酮酸激酶的别构激活剂,而ATP 有抑制效应己糖激酶:己糖激酶受到其反应产物,葡糖6 磷酸的反馈抑制-可编辑修改 -_17. 柠檬酸循环的要点及柠檬酸的意义三羧酸循环有四次脱氢,两次脱羧和一次底物水平磷酸化三羧酸循环有三个不可逆反应,三个关键酶:柠檬酸合酶,异柠檬酸脱

29、氢酶,- 酮戊二酸脱氢酶三羧酸循环中间产物包括草酰乙酸在内起着催化剂作用三羧酸循环一周产生10 个 ATP三羧酸循环可以为氧化磷酸化提供还原能量18. 草酰乙酸在物质代谢的作用草酰乙酸在三羧酸循环中起催化剂一样的作用。其量绝定细胞内三羧酸循环的速度,草酰乙酸主要来自糖代谢丙酮酸所化,故糖代谢障碍的时候,三羧酸循环及之类分解代谢将不能顺利进行;草酰乙酸是糖异生的重要代谢产物;草酰乙酸与氨基酸的代谢和核苷酸的代谢有关;草酰乙酸参与了乙酰辅酶 A 从线粒体转运至包浆的过程,这与糖转变为脂的过程密切相关;草酰乙酸参与了包浆内 NADH 运至线粒体的过程;草酰乙酸可经转氨基作用合成天冬氨酸19. 乙酰

30、CoA 在物质代谢中的作用乙酰 COA 是糖脂蛋白质代谢共有的重要中间代谢产物,也是三大营养物质代谢联系的枢纽.乙酰 COA 的生成 :糖有氧氧化 ;脂肪酸氧化 ;酮体氧化分解 ;氨基酸分解代谢 ; 甘油及乳酸分解 .乙酰 COA 的代谢去路 :进入三羧酸循环彻底氧化分解,在肝细胞线粒体生成酮体 ,为缺糖时的重要能源之一 ;合成胆固醇 ;合成神经地质乙酰胆碱20. 有氧氧化ATP 产生计算第一阶段:葡萄糖葡糖6 磷酸-1ATP果糖 -6 磷酸果糖 16 二磷酸-1ATP3 磷酸甘油醛 1,3- 二磷酸甘油酸3/5ATP1,3- 二磷酸甘油酸 3 磷酸甘油酸2ATP磷酸烯醇式丙酮酸丙酮酸2ATP

31、第二阶段丙酮酸乙酰辅酶A5ATP第三阶段异柠檬酸酮戊二酸5ATP酮戊二酸琥珀酰 CoA5ATP琥珀酰 CoA 琥珀酸2ATP ( GTP )琥珀酸延胡索酸3ATP-可编辑修改 -_苹果酸草酰乙酸5ATP21. 磷酸戊糖途径的关键酶和意义关键酶:葡糖 -6- 磷酸脱氢酶意义:为生物的核酸合成提供核糖提供 NADPH 作为供氢体参与多种代谢反应: I NADPH 是许多代谢反应供氢体II NADPH 参与羟化反应III NADPH 可以维持谷胱甘肽的还原性22. 糖异生的过程是否为糖酵解的逆过程糖异生不是糖酵解的逆反应。糖酵解过程中有三步不可逆反应,在糖异生途径中必须由另外的反应和酶代替。丙酮酸变

32、成磷酸烯醇式丙酮酸:需要丙酮酸羧化酶和磷酸烯醇式丙酮酸激酶1,6- 二磷酸果糖 6- 磷酸果糖,由果糖二磷酸酶1 催化葡萄糖6- 磷酸变为葡萄糖,由葡萄糖-6- 磷酸酶催化。综上,糖异生不是糖酵解的逆过程23. 糖异生的四个关键酶和糖异生的意义四个关键酶:丙酮酸羧化酶,磷酸烯醇式丙酮酸激酶,果糖二磷酸酶1 ,葡萄糖 -6- 磷酸酶意义:维持血糖恒定是糖异生重要的作用糖异生是补充和恢复肝糖原储备的重要途径肾糖异生增强有利于维持酸碱平衡24. 血糖的来源和去路血糖来源:食物中的糖的消化吸收肝糖原的分解非糖类物质通过糖异生的转化血糖去路:糖类物质的氧化分解,二氧化碳和水肝糖原和肌糖原的合成磷酸戊糖途

33、径合成核糖和 NADPH 转变成脂肪,氨基酸等物质25. 糖原的分解过程糖原磷酸化酶催化糖原非还原端的-1,4 糖苷键磷酸化,生成1- 磷酸葡萄糖1- 磷酸葡萄糖异构生成6- 磷酸葡萄糖葡萄糖 -6- 磷酸酶催化6-磷酸葡萄糖水解成葡萄糖-可编辑修改 -_糖原的参与部分,脱去分之后形成寡糖链,寡糖链可以继续由糖原磷酸化酶催化磷酸化,重复26. 糖原合成的过程葡萄糖磷酸化生成 6- 磷酸葡萄糖6- 磷酸葡萄糖异构成 1- 磷酸葡萄糖1- 磷酸葡萄糖与 UTP 反应生成 UDPG在糖原合酶的催化下,UDPG 的葡萄糖残基加到糖原引物分子上生成糖原(Gn+1 )27. 饥饿 48 小时后糖代谢的特点

34、饥饿 XX 小时后属于短期饥饿,此时血糖趋于降低,引起胰岛素分泌较少,胰高血糖素分泌增高糖代谢 :糖原已基本耗竭,糖异生作用加强,组织对葡萄糖的氧化利用降低,大脑仍以葡萄糖为主要能源物质脂代谢:脂肪动员增强,酮体生成增加,肌肉以脂肪酸分解方式供能蛋白质代谢:肌肉蛋白质分解增强28. 简述 6- 磷酸葡萄糖的代谢途径及其在糖代谢中的重要作用 6 一磷酸葡萄糖的来源:I 己糖激酶或葡萄糖激酶催化葡萄糖磷酸化生成6 磷酸葡萄糖。 II糖原分解产生的卜磷酸葡萄糖转变为6 一磷酸葡萄糖。III 糖物质经糖异生由6 一磷酸果糖异构成6 一磷酸葡萄糖。 6 一磷酸葡萄糖的去路:I 经糖酵解生成乳酸。II 经

35、糖有氧氧化彻底氧化生成CO2 HZO和ATPO III通过变位酶催化生成卜磷酸葡萄糖,合成糖原IV 在 6 一磷酸葡萄糖脱氢酶催化下进人磷酸戊糖途径。由上可知,6 一磷酸葡萄糖是糖代谢各个代谢途径的交叉点,是各代谢途径的共同中间产物,如己糖激酶或变位酶的活性降低,可使6 一磷酸葡萄糖的生成减少,上述各条代谢途径不能顺利进行。29. 糖代谢生成的丙酮酸可进入哪些代谢途径在供氧不足时,丙酮酸在LDH 催化下,接受NADH+H的氢还原生成乳酸。在供氧充足时,丙酮酸进入线粒体,在丙酮酸脱氢酶系的催化下,氧化脱羧生成乙酰CoA ,再经三羧酸循环和氧化磷酸化,彻底氧化生成CO2、H2O 和 ATP 。丙酮

36、酸进入线粒体在丙酮酸羧化酶催化下生成草酰乙酸,后者经磷酸烯醇式丙酮酸羧激酶催化生成磷酸烯醇式丙酮酸,再异生成糖。丙酮酸进入线粒体在丙酮酸羧化酶催化下生成草酰乙酸,后者与乙酰CoA 缩合生成柠檬酸,可-可编辑修改 -_促进乙酰 CoA 进入三羧酸循环彻底氧化。 丙酮酸进入线粒体在丙酮酸羧化酶催化下生成草酰乙酸, 后者与乙酰 CoA 缩合生成柠檬酸, 柠檬酸出线粒体在细胞液中经柠檬酸裂解催化生成乙酰 CoA ,后者可作为脂肪酸、胆固醇等的合成原料。丙酮酸可经还原性氨基化生成丙氨酸等非必需氨基酸。决定丙酮酸代谢的方向是各条代谢途径中关键酶的活性,这些酶受到别构效应剂与激素的调节。30. 氨基酸脱氨基

37、作用方式和特点体内氨基酸脱氨基作用的主要方式有:氧化脱氨基作用、转氨基作用、联合脱氨基作用以及其他脱氨基作用等四种方式。特点: 氧化脱氨基作用: 先进行脱氢氧化, 然后水解脱氨。 因谷氨酸脱氢酶分布广, 活性高,主要由谷氨酸进行氧化脱氨基作用。转氨基作用:只发生氨基的转移,无游离氨产生;联合脱氨基作用:将转氨基作用和谷氨酸的氧化脱氨基作用联合起来进行,使体内大多数氨基酸的脱掉氨基,生成游离氨和-酮酸。其他脱氨基作用:是个别氨基酸特殊的脱氨基方式。31. 葡萄糖 -丙氨酸循环过程及其意义肌肉中的氨基酸将氨基转给丙酮酸生成丙氨酸,后者经血液循环转运至肝脏经过联合脱氨基作用再脱氨基,放出的氨用于合成

38、尿素;生成的丙酮酸经糖异生转变为葡萄糖后再经血液循环转运至肌肉重新分解产生丙酮酸,丙酮酸再接受氨基生成丙氨酸。丙氨酸和葡萄糖反复地在肌肉和肝之间进行氨的转运,故将这一循环过程称为丙氨酸-葡萄糖循环32. 说明丙氨酸、谷氨酸的成糖过程丙氨酸经 GPT 催化成丙酮酸丙酮酸在线粒体内经丙酮酸羧化酶生成草酰乙酸,草酰乙酸经苹果酸脱氢酶催化生成苹果酸出线粒体,在细胞液中生成草酰乙酸,草酰乙酸在磷酸烯醇式丙酮酸激酶的作用下生成磷酸烯醇式丙酮酸磷酸烯醇式丙酮酸经糖酵解途径至1,6- 二磷酸果糖 1,6- 二磷酸果糖经果糖二磷酸酶1 催化生成 6- 磷酸果糖,在异构成 6- 磷酸葡糖6-磷酸葡糖在葡糖 -6-

39、 磷酸酶作用下生成葡萄糖而谷氨酸转氨基 (ALT/AST)生成酮戊二酸, 然后经过三羧酸循环成苹果酸出线粒体,然后步骤通丙氨酸,或者转氨基生成天冬氨酸,再转氨基生成草酰乙酸,步骤再同丙氨酸33. 简要说明血浆甘油三酯的来源和去路及激素对其的调节甘油三酯的合成代谢合成的部位:肝脏、脂肪组织、小肠粘膜等。原料: I 甘油和脂酸主要来自于葡萄糖代谢;IICM 中的 FFA (来自食物脂肪)。-可编辑修改 -_基本合成过程:I 甘油一酯途径(小肠粘膜细胞)。II 甘油二酯途径(肝、脂肪细胞)。甘油三酯的分解代谢: I 脂肪的动员: 储存在脂肪细胞中的脂肪,被肪脂酶逐步水解为FFA及甘油,并释放入血以供

40、其他组织氧化利用的过程。其中关键酶是激素敏感性甘油三酯脂肪酶。II 甘油的氧化:甘油经血运至肝、肾、肠等组织,彻底氧化。III 脂酸的- 氧化:氧化部位:除脑组织外,大多数组织均可进行,其中肝、肌肉最活跃。过程:(a) 脂酸的活化脂酰CoA的生成(胞液)( b)脂酰 CoA 进入线粒体:借助于肉碱的携带。34. 试比较两种生成甘油三酯途径脂肪酸活化成脂酰辅酶 A小肠黏膜细胞以甘油一酯途径合成甘油三酯:在脂酰辅酶A 转移酶催化, ATP 功能,将脂酰辅酶 A 的脂酰基转移给2- 甘油一酯的羟基肝和脂肪组织以甘油二脂途径合成甘油三酯:以葡萄糖酵解途径生成的甘油为起始物,先合成 1,2- 甘油二脂,

41、最后通过酯化甘油二酯羟基形成甘油三酯35. 简述脂肪酸分解的步骤和关键酶脂肪酸活化成脂酰辅酶A:内质网和线粒体上的脂酰辅酶A 合成酶脂酰辅酶A 进入线粒体,在肉碱脂酰转移酶I脂酰辅酶A 分解生成乙酰辅酶A, FADH2 和 NADH经过脱氢,加水,再脱氢,硫解36. 血浆脂蛋白的合成部位和功能CM 由小肠黏膜细胞合成,功能是转运外源性甘油三酯和胆固醇VLDL 由肝细胞合成、分泌,功能是转运内源性甘油三酯和胆固醇LDL 由 VLDL 在血浆中转化而来,功能是转运内源性胆固醇,即将胆固醇由肝转运至肝外组织HDL 主要由肝细胞合成、分泌,功能是逆向转运胆固醇,即将胆固醇由肝外组织转运到肝37. 简述

42、乙酰 CoA 在脂类代谢中的作用在机体脂质代谢中,乙酰CoA 主要来自脂肪酸的氧化,也可来自甘油的氧化分解;乙酰CoA在肝中可被转化为酮体向肝外运送,也可作为脂肪酸生物合成及细胞胆固醇合成的基本原料。38. 酮体的生成和利用的生理意义酮体是脂酸在肝内正常的中间代谢产物,是甘输出能源的一种形式;酮体是肌肉尤其是脑的重要能源。-可编辑修改 -_酮体分子小,易溶于水,容易透过血脑屏障。体内糖供应不足(血糖降低)时,大脑不能氧化脂肪酸,这时酮体是脑的主要能源物质。39. 鸟苷酸循环途径和调节 NH3 CO2 和 ATP 缩合成氨基甲酰磷酸, CPS-I 合成酶氨基甲酰磷酸和鸟氨酸生成瓜氨酸瓜氨酸和天冬

43、氨酸生成精氨酸代琥珀酸精氨酸代琥珀酸裂解成精氨酸和延胡索酸精氨酸分解成尿素和鸟氨酸调节:高蛋白膳食促进尿素合成AGA 激活 CPS-I 启动尿素合成精氨酸代琥珀酸合成酶活性促进尿素合成40. 一碳单位的来源和去路来源:丝氨酸,甘氨酸代谢产生N5-N10-CH2-FH4组氨酸代谢产生N5-CH=NH-FH4色氨酸代谢产生N10-CHO-FH4去路: N5-N10-CH2-FH4提供胸腺嘧啶合成的甲基N5-CH=NH-FH4提供嘌呤合成时的C8N10-CHO-FH4提供嘌呤合成时的C241. 请叙述胆固醇的生物合成与糖代谢的关系除了脑组织和成熟红细胞之外,人体各组织都可以合成胆固醇,其中肝脏的合成能力最强,占全身胆固醇总量的 80,另外有 10由小肠合成。胆固醇的合成场所是细胞液和内质网,合成原料是乙酰 CoA ,此外还需要 NADPH 供氢, ATP 供能。乙酰 CoA 和 ATP 主要来自糖的有氧氧化, NADPH 主要来自磷酸戊糖途径。42. 胆汁酸的主要生理功能促进脂类物质的消化和吸收维持胆汁中胆固醇的溶解状态以抑制胆固醇析出43. 简述胆固醇的来源和去路来源 :从食物中摄取机体细胞自身合成-可编辑修改 -_去路 :在肝脏可转换成胆汁酸在性腺 ,肾上腺皮质可以转化为类固醇激素在欺负可以转化为维生素D3用于构成细胞膜酯化

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论