版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、数学专题 精心整理类型四抛物线形问题【典例1】已知平面直角坐标系(如图1),直线的经过点和点.(1)求、的值;(2)如果抛物线经过点、,该抛物线的顶点为点,求的值;图1Oxy(3)设点在直线上,且在第一象限内,直线与轴的交点为点,如果,求点的坐标.【答案】:(1) (2)(3)(4,8)【解析】:(1) 直线的经过点直线的经过点 (2)由可知点的坐标为 抛物线经过点、 , 抛物线的表达式为抛物线的顶点坐标为, (3)过点作轴,垂足为点,则轴 , 直线与轴的交点为点点的坐标为,又,,轴 即点的纵坐标是又点在直线上点的坐标为【典例2】如图在直角坐标平面内,抛物线与y轴交于点A,与x轴分别交于点B(
2、-1,0)、点C(3,0),点D是抛物线的顶点.(1)求抛物线的表达式及顶点D的坐标;(2)联结AD、DC,求的面积;备用图第2题图(3)点P在直线DC上,联结OP,若以O、P、C为顶点的三角形与ABC相似,求点P的坐标 【答案】(1)(1,-4)(2)3(3)或【解析】:(1) 点B(-1,0)、C(3,0)在抛物线上,解得 抛物线的表达式为,顶点D的坐标是(1,-4) (2)A(0,-3),C(3,0),D(1,-4) , (3),CADAOB,OA=OC, ,即 若以O、P、C为顶点的三角形与ABC相似 ,且ABC为锐角三角形 则也为锐角三角形,点P在第四象限由点C(3,0),D(1,-
3、4)得直线CD的表达式是,设()过P作PHOC,垂足为点H,则,当时,由得,解得, 当时,由得,解得, 综上得或【典例3】已知抛物线经过点、(1)求抛物线的解析式;(2)联结AC、BC、AB,求的正切值;(3)点P是该抛物线上一点,且在第一象限内,过点P作交轴于点,当点在点的上方,且与相似时,求点P的坐标(第3题图)yxABCO【答案】:(1)解得 (2) (3) 点的坐标为或【解析】:(1)设所求二次函数的解析式为,将(,)、(,)、(,)代入,得 解得 所以,这个二次函数的【解析】式为 (2)(,)、(,)、(,) , (3)过点P作,垂足为H设,则(,),当APG与ABC相似时,存在以下
4、两种可能: 则即 解得 点的坐标为 则即 解得 点的坐标为 【典例4】已知抛物线经过点A(1,0)和B(0,3),其顶点为D.(1)求此抛物线的表达式;(2)求ABD的面积;(3)设P为该抛物线上一点,且位于抛物线对称轴右侧,作PH对称轴,垂足为H,若DPH与AOB相似,求点P的坐标.【答案】:(1)抛物线的表达式为(2)1(3)点P的坐标为(5,8),.【解析】:(1)由题意得:, 解得:,所以抛物线的表达式为. (2)由(1)得D(2,1),作DTy轴于点T, 则ABD的面积=.(3)令P.由DPH与AOB相似,易知AOB=PHD=90°,所以或,解得:或,所以点P的坐标为(5,
5、8),.【典例5】平面直角坐标系xOy中(如图8),已知抛物线经过点A(1,0)和B(3,0),与y轴相交于点C,顶点为P 图5(1)求这条抛物线的表达式和顶点P的坐标; (2)点E在抛物线的对称轴上,且EA=EC,求点E的坐标;(3)在(2)的条件下,记抛物线的对称轴为直线MN,点Q在直线MN右侧的抛物线上,MEQ=NEB,求点Q的坐标 【答案】:(1)P的坐标是(2,-1)(2)m=2(3),点E的坐标为(5,8)【解析】:(1)二次函数的图像经过点A(1,0)和B(3,0),解得:, 这条抛物线的表达式是顶点P的坐标是(2,-1)(2)抛物线的对称轴是直线,设点E的坐标是(2,m)根据题
6、意得: ,解得:m=2,点E的坐标为(2,2)(3)解法一:设点Q的坐标为,记MN与x轴相交于点F作QDMN,垂足为D, 则,QDE=BFE=90°,QED=BEF,QDEBFE,解得(不合题意,舍去),点E的坐标为(5,8)解法二:记MN与x轴相交于点F联结AE,延长AE交抛物线于点Q,AE=BE, EFAB,AEF=NEB,又AEF=MEQ,QEM=NEB,点Q是所求的点,设点Q的坐标为,作QHx轴,垂足为H,则QH=,OH=t,AH=t-1,EFx轴,EF QH,解得(不合题意,舍去),点E的坐标为(5,8)xBC第6题图Oy·【典例6】在平面直角坐标系xOy中,已知
7、点B(8,0)和点C(9,)抛物线(a,c是常数,a0)经过点B、C,且与x轴的另一交点为A对称轴上有一点M ,满足MA=MC(1) 求这条抛物线的表达式; (2) 求四边形ABCM的面积; (3) 如果坐标系内有一点D,满足四边形ABCD是等腰梯形,且AD/BC,求点D的坐标 【答案】:(1)抛物线的表达式: (2)3(3) 点D的坐标【解析】:(1)由题意得:抛物线对称轴,即 点B(8,0)关于对称轴的对称点为点A(0,0), 将C(9,-3)代入,得抛物线的表达式: (2)点M在对称轴上,可设M(4,y)又MA=MC,即 , 解得y=-3, M(4,-3) yMC/AB且MCAB, 四边
8、形ABCM为梯形,, AB=8,MC=5,AB边上的高h = yM = 3 xO(3) 将点B(8,0)和点C(9,3)代入 可得MACB,解得由题意得,AD/BC, ,又AD过(0,0),DC=AB=8,设D(x,-3x) ,解得(不合题意,舍去), 点D的坐标ABOCxy(第7题图)D【典例7】如图,已知在平面直角坐标系xOy中,抛物线与x轴交于点A和点B(1,0),与y轴相交于点C(0,3)(1)求抛物线的解析式和顶点D的坐标;(2)求证:DAB=ACB;(3)点Q在抛物线上,且ADQ是以AD为底的等腰三角形,求Q点的坐标【答案】:(1)顶点坐标D(1,4)(2)(3)点Q的坐标是,【解
9、析】:(1)把B(1,0)和C(0,3)代入中,得,解得抛物线的解析式是:顶点坐标D(1,4)(2)令,则,A(3,0),CAO=OCA在中,;,是直角三角形且,又DAC和OCB都是锐角,DAC=OCB,即(3)令,且满足,,0),4)是以AD为底的等腰三角形,即, 化简得:由,解得,点Q的坐标是,【典例8】如图8,在平面直角坐标系中,直线与轴、轴分别相交于点、,并与抛物线的对称轴交于点,抛物线的顶点是点(1)求和的值;(2)点是轴上一点,且以点、为顶点的三角形与相似,求点的坐标;(3)在抛物线上是否存在点:它关于直线的对称点恰好在轴上如果存在,直接写出点的坐标,如果不存在,试说明理由图8xy
10、11O【答案】:(1)b=1(2)点有两个,其坐标分别是和 (3)点的坐标是或【解析】:(1) 由直线经过点,可得.由抛物线的对称轴是直线,可得.(2) 直线与轴、轴分别相交于点、,点的坐标是,点的坐标是.抛物线的顶点是点,点的坐标是.点是轴上一点,设点的坐标是.BCG与BCD相似,又由题意知,BCG与相似有两种可能情况:如果,那么,解得,点的坐标是.如果,那么,解得,点的坐标是.综上所述,符合要求的点有两个,其坐标分别是和 (3)点的坐标是或.【典例9】已知:如图9,在平面直角坐标系xOy中,抛物线的图像与x轴交于点A(3,0),与y轴交于点B,顶点C在直线上,将抛物线沿射线AC的方向平移,
11、当顶点C恰好落在y轴上的点D处时,点B落在点E处(1)求这个抛物线的解析式;(2)求平移过程中线段BC所扫过的面积; (3)已知点F在x轴上,点G在坐标平面内,且以点C、E、F、G为顶点的四边形是矩形,求点F的坐标备用图图9 【答案】:(1)抛物线的解析式为 (2)12(3)有,),【解析】:(1)顶点C在直线上,将A(3,0)代入,得,解得,抛物线的解析式为(2)过点C作CMx轴,CNy轴,垂足分别为M、N =,C(2,),MAC=45°,ODA=45°,抛物线与y轴交于点B,B(0,),抛物线在平移的过程中,线段BC所扫过的面积为平行四边形BCDE的面积,(3)联结CE
12、.四边形是平行四边形,点是对角线与的交点,即 .(i)当CE为矩形的一边时,过点C作,交轴于点,设点,在中,即 ,解得 ,点同理,得点(ii)当CE为矩形的对角线时,以点为圆心,长为半径画弧分别交轴于点、,可得 ,得点、综上所述:满足条件的点有,),【典例10】如图,已知抛物线y=ax2+bx的顶点为C(1,),P是抛物线上位于第一象限内的一点,直线OP交该抛物线对称轴于点B,直线CP交x轴于点A(1)求该抛物线的表达式;(2)如果点P的横坐标为m,试用m的代数式表示线段BC的长;(3)如果ABP的面积等于ABC的面积,求点P坐标(第10题图)yPOxCBA【答案】:(1)抛物线的表达式为:y=x2-2x(2) BC= m-2+1=m-1(3)P的坐标为()(第10题图)yPOxCBA【解析】:(1)抛物线y=ax2+bx的顶点为C(1,) 解得: 抛物线的表达式为:y=x2-2x;(2)点P 的横坐标为m
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 医疗系统调动申请书(10篇)
- 学术合作风险防范-洞察分析
- 有机肥料应用研究-第1篇-洞察分析
- 虚拟城市的文学表达-洞察分析
- 勤俭节约传承美德广播稿范文(5篇)
- 医院医保专员的工作总结范文(6篇)
- 办公环境下的高效实验室安全管理策略与培训方法
- 企业安全管理体系中应急预案的制定与执行
- 创业过程中的人才选拔与培养策略
- 2025小麦种子的购销合同
- 高教版【中职专用】《中国特色社会主义》期末试卷+答案
- 汽车技工的汽车维修技能培训
- 工会新闻写作培训课件
- 综合英语智慧树知到期末考试答案章节答案2024年喀什大学
- 口腔科医疗安全隐患
- 《建筑施工安全检查标准》JGJ59-20248
- 宪法知识宣传总结报告
- 外侧Hoffa骨折手术入路
- 2023年全国统一高考化学试卷(辽宁卷)含答案与解析
- 国开2024年《钢结构(本)》阶段性学习测验1-4答案
- 【小升初】部编版2023-2024学年六年级下册期末语文检测卷(含答案)
评论
0/150
提交评论