燃气燃烧与应用_知识点_第1页
燃气燃烧与应用_知识点_第2页
燃气燃烧与应用_知识点_第3页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、CO2m第一章 燃气的燃烧计算 燃烧:气体燃料中的可燃成分( H2、 C mHn、CO 、 H2S 等)在一定条件下与氧发生激烈的氧化作用,并产生 大量的热和光的物理化学反应过程称为燃烧。 燃烧必须具备的条件:比例混合、具备一定的能量、 具备反应时间热值 :1Nm3燃气完全燃烧所放出的热量称为该燃气的热 值,单位是 kJ/Nm3。对于液化石油气也可用 kJ/kg 。高热值是指 1m3 燃气完全燃烧后其烟气被冷却至原 始温度,而其中的水蒸气以凝结水状态排出时所放出 的热量。低热值是指 1m3 燃气完全燃烧后其烟气被冷却至原始 温度,但烟气中的水蒸气仍为蒸汽状态时所放出的热 量。一般焦炉煤气的低热

2、值大约为 16000 17000KJ/m33 天然气的低热值是 3600046000 KJ/m3 液化石油气的低热值是 88000120000KJ/m3 按 1KCAL=4.1868KJ 计算: 焦炉煤气的低热值约为 3800 4060KCal/m3 天然气的低热值是 860011000KCal/m33 液化石油气的低热值是 21000286000KCal/m3 热值的计算热值可以直接用热量计测定,也可以由各单一气体的 热值根据混合法则按下式进行计算:理论空气需要量每立方米 ( 或公斤 ) 燃气按燃烧反应计量方程式完全 燃烧所需的空气量,单位为 m3/m3 或 m3/kg 。它是燃气 完全燃烧

3、所需的最小空气量。过剩空气系数 : 实际供给的空气量 v 与理论空气需要量 v0之比称为过剩空气系数。值的确定 值的大小取决于燃气燃烧方法及燃烧设备的运 行工况。工业设备 1.05-1.20民用燃具 1.30-1.80 值对热效率的影响 过大,炉膛温度降低,排烟热损失增加,热效率降低; 过小,燃料的化学热不能够充分发挥, 热效率降低。应该保证完全燃烧的条件下接近于 1.烟气量 含有 1m3 干燃气的湿燃气完全燃烧后的产物 运行时过剩空气系数的确定计算目的: 在控制燃烧过程中,需要检测燃烧过程中的过剩空气 系数,防止过剩空气变化而引起的燃烧效率与热效率 的降低。在检测燃气燃烧设备的烟气中的有害物

4、质时,需要根 据烟气样中氧含量或二氧化碳含量确定过剩空气系 数,从而折算成过剩空气系数为 1 的有害物含量。根据烟气中 O2 含量计算过剩空气系数20.9 a'20.92 O 'O 2 - 烟气样中的氧的容积成分2)根据烟气中 CO2 含量计算过剩空气系数COCO 2m当 1时,干燃烧产物中 CO2含量, %; CO 2 实际干燃烧产物中 CO2含量, %。1.4 个燃烧温度定义及计算公式 热量计温度:一定比例的燃气和空气进入炉内燃烧,它们带入的热量包括两部分:其一是由燃气、空气带 入的物理热量 ( 燃气和空气的热焓 ) ;其二是燃气的化 学热量 (热值 ) 。如果燃烧过程在绝

5、热条件下进行,这 两部分热量全部用于加热烟气本身,则烟气所能达到 的温度称为热量计温度。燃烧热量温度:如果不计参加燃烧反应的燃气和空气 的物理热,即 t at go,并假设 a 1则所得的烟气 温度称为燃烧热量温度。理论燃烧温度:将由 CO2HO2 在高温下分解的热损失和发 生不完全燃烧损失的热量考虑在内,则所求得的烟气 温度称为理论燃烧温度 t th实际燃烧温度:2. 影响燃烧温度的因素 热值:一般说来,理论燃烧温度随燃气低热值 H l 的增 大而增大 .过剩空气系数:燃烧区的过剩空气系数太小时,由于 燃烧不完全,不完全燃烧热损失增大,使理论燃 烧温度降低。若过剩空气系数太大,则增加了燃烧产

6、 物的数量,使燃烧温度也降低燃气和空气的初始温度:预热空气或燃气可加大空气 和燃气的焓值,从而使理论燃烧温度提高。3. 烟气的焓与空气的焓 烟气的焓:每标准立方米干燃气燃烧所生成的烟气在 等压下从 0加热到 t 所需的热量,单位为千焦每标 准立方米。空气的焓:每标准立方米干燃气燃烧所需的理论空气 在等压下从 0加热到 t( ) 所需的热量,单位为千焦 每标准立方米。第一章思考题 第一章课后例题必须会做。 燃气的热值、理论空气量、烟气量与燃气组分的关 系,三类常用气体热值、理论空气量、烟气量的取值 范围。在工业与民用燃烧器设计时如何使用高低热值进行计 算在燃烧器设计与燃烧设备运行管理中如何选择过

7、剩空 气系数运行中烟气中 CO含量和过剩空气系数对设计与运行管 理的指导作用燃烧温度的影响因素及其提高措施。第二章 燃气燃烧反应动力学链反应:不是由反应物一步就获得生成物,而是通过 一系列的基元反应来进行的,直到反应物消耗殆尽或 有外力使其终止。链反应的分类:( a)直链反应( b)支链反应可燃气体的燃烧都属于支链反应稳定的氧化反应过程;任何可燃气体在一定条件下与 氧接触,都要发生氧化反应。如果氧化反应过程发生 的热量等于散失的热量,或者活化中心浓度增加的数 量正好补偿其销毁的数量,这个过程就称为稳定的氧 化反应过程。不稳定的氧化反应: 如果氧化反应过程生成的热量大 于散失的热量,或者活化中心

8、浓度增加的数量大干其 销毁的数量,这个过程就称为不稳定的氧化反应过 程。着火: 由稳定的氧化反应转变为不稳定的氧化反应而 引起燃烧的一瞬间。支链着火:在一定条件下,由于活化中心浓度迅速增 加而引起反应加速从而使反应由稳定的氧化反应转变 为不稳定的氧化反应的过程,称为支链着火 热力着火:一般工程上遇到的着火是由于系统小热量 的积聚,使温度急剧上升而引起的、这种着火称为热 力着火。燃料开始燃烧的最低温度叫着火温度。即燃料在充足 空气供给下加热到某一温度,达到此温度后不再加 热,燃料依靠自身的燃烧热继续燃烧 ( 持续 5min 以 上) ,此温度即称为着火温度或着火点。燃料的着火温度随燃料的种类、燃

9、料的形态、燃烧时 周围的环境而变,不是一个常数。在常压(大气压)下 液化石油气的着火温度为 365 460 天然气的着火温度为 270 540 人工燃气着火温度为 270 605 可燃混合物热力着火的影响因素 环境温度压力 可燃物与环境的传热系数 成分(物性)1 、点火:当微小热源放入可燃混合物小时,则贴近 热源周围的一居混合物被迅速加热、并开始燃烧产生 火焰然后向系统其余冷的部分传播使可燃混合物 逐步着火燃烧、这种现象称为强制点火,简称点火。 点火的两个重要因素:着火 火焰传播2. 点火源:灼热固体颗粒、电热线圈、电火花、小火 焰等。4. 电火花点火:把两个电极放在可燃混合物中,通过 高压电

10、打出火花释放出一定的能量,使可燃混合物点 着,称为电火花点火。电火花点火的两个阶段:初始火焰中心的形成 火焰 的传播最小点火能:当电极间隙内的可燃混合物的浓度、温 度和压力一定时苦耍形成初始的火焰中心,放电能 量必须有一最小极值,能量低于此极值时不能形成初 始火焰中心,这个必要的最小放电能员就是最小点火 能量 Enin 。熄火距离:当两个电极之间的距离小到无论多大的电 火花能量都不能使可燃混什物点燃时,这个最小距离 就叫熄火距离 第二章思考题 浓度、温度、压力对化学反应速度的影响 什么是支链反应,支链反应对燃烧的影响 为什么着火温度不是一个常数 影响着火温度的因素有哪些 常用燃气的最小点火能与

11、熄火间距是多少 第三章燃气燃烧的气流混合过程自由射流: 当气流由管嘴或孔口喷射到充满静止介质 的无限大空间时,形成的气流。等温自由射流:周围介质的温度和密度与喷出气流相 同。边界 1 是射流边界边界 2 是射流核心区边界 界面 3: Cg=Ch; 界面 4:Cg=Cst ; 界面 5:Cg=Cl ;A:纯燃气 B:处于着火浓度上限以外的燃气和空气混合物 C:处于着火浓度范围以内的燃气和空气混合物,含有 过剩燃气;D:处于着火浓度下限以外的燃气和空气混合物,含有 过剩空气E:处于着火浓度下限以外的燃气和空气混合物5. 层流扩散火焰长度 当燃气成分一定时,层流扩散火焰的长度上主要取决 于燃气的体积

12、流量。流量增大 火焰长度增大 出口速度一定时,喷嘴直径越大,火焰长度也越大 喷嘴直径越大,火焰长度也越大。 流量一定时,则火焰长度与直径无关。平行气流中的自由射流 射流速度与外围平行气流速度的速度梯度 射流的扩张角轴心速度的衰减 射流核心区的长度2. 平行气流中射流轴心速度的衰减绝对穿透深度 h :在相交气流中,当射流轴线变得与 主气流方向一致时,喷嘴出口平面到射流轴线之间的 法向距离 h 定义为绝对穿透深度。 相对穿透深度:绝对穿透深度 h 与喷嘴直径之比,定 义为相对穿透深度,即 h/d 。 射程:在射流轴线上定出一点,使该点的轴速度在 x 方向上的分速度 Vx为出口速度 V2的 5%,以

13、喷嘴平面至 该点的相对法向距离 X1/d ,定义为射程。 多股射流与受限气流相交时的流动规律 影响因素( 1)主气流流动通道的相对半宽度 B/2d; ( 2)射流喷嘴相对中心距 s/d 。 旋转射流:射流在从喷嘴中流出时,气流本 身一面旋 转,一面又向静止介质中扩散前,这就是旋转射流, 简称旋流。2. 旋转射流的特点: 旋转紊流运动、自由射流、和绕 流3. 产生方法(1)使全部气流或一部分气流切向进入(2)设置导流叶片(3)采用旋转的机械装置4. 旋转射流的基本特性1). 增加切向分速度,径向分速度较直流射流时大;2). 径向和轴向上都建立了压力梯度。强旋转射流内 部形成回流区;3). 内外回

14、流区的存在对着火稳定性有影响;4). 旋转射流的扩展角大;5). 射程小 旋转射流的无因次特性旋流数:旋流数 s 不仅反 映了射流的旋转强弱,射流动力相似的相似准则。 思考题1、相对穿透深度与射程定义及其在气流混合过程中的 物理意义。2、燃气自由射流的特点与图形3、不同相交气流的流动规律4、旋转射流的特点与产生旋转射的方法、旋流数的计 算;第四章燃气燃烧的火焰传播 火焰面:未燃气体和已燃气体的分界面即为火焰锋 面,亦称火焰前沿(前锋)。 常压条件下火焰前锋的 -2 -1厚度: 10-2 10-1 mm 火焰传播速度:火焰前锋沿其法线方向朝新鲜混气传 播的速度。用 S n 表示。测定 Sn 的实

15、验方法的概述两种主要方法静力法:静力法是让火焰焰面在静止的可燃混合物中 运动。动力法:动力法则是让火焰焰面处于静止状态,而可 燃混合物气流则以层流状态作相反方内运动。 管子法、本生火焰法影响火焰传播速度的因素1. 混气成分的影响2. 混气性质的影响 导热系数增加,活化能减少或火焰温度增加时,火焰 传播速度增大。碳原子个数的影响3. 温度的影响 温度增加,火焰传播速度增加。4. 压力的影响 压力对火焰传播速度的影响较小5. 湿度和惰性气体的影响 添加气有两面性( 1)改变混合气的物理性质, 如导热系数 催化作用火焰传播浓度极限及其测定 定义:能使火焰继续不断传播所必需的最低燃气浓 度,称为火焰传

16、播浓度下限 ( 或低限 );能使火焰继续 不断传播所必需的最高燃气浓度,称为火焰传播浓度 上限(或高限 ) 。上限和下限之间就是火焰传播浓度极 限范围,火焰传播浓度极限又称着火浓度极限、爆炸 极限。影响火馅传播浓度极限的因素 1燃气在纯氧中着火燃烧时,火焰传播浓度极限范围 将扩大。2提高燃气空气混合物温度,会使反应速度加快, 火焰温度上升,从而使火焰传播浓度极限范围扩大。3 提高燃气空气混合物的压力,其分子间距缩 小,火焰传播浓度极限范围将扩大,其上限变化更为 显著。4 可燃气体中加入惰性气体时,火焰传播浓度极限 范围将缩小 (图 425) 。5含尘量、含水蒸气量以及容器形状和壁面材料等因 素

17、,有时也影响火焰传播浓度极限。各种燃气的爆炸极限如下燃气类别爆炸下限(%)爆炸上限(%)天然气515人工煤气520.73173液化石油 气1.59.5第四章 思考题1. 火焰传播的意义与火焰传播机理。2. 法向火焰传播的定义与测定方法。3. 层流火焰传播速度的影响因素。4. 紊流火焰传播的特点与紊流火焰传播速度的计算。5. 火焰传播浓度极限与影响因素,常用气体的火焰传 播浓度范围。第五章燃气燃烧方法 一次空气:在燃烧前预先与燃气混合的那部分空气。 一次空气系数:一次空气与燃烧所需要的理论空气量 之比。燃气燃烧方法扩散式燃烧: 燃气和空气不预混,一次空气系数 a 0大气式燃烧: 燃气和一部分空气

18、预先混合a 0.20.8完全预混式燃烧: 燃气和空气完全预混 a1 本生灯火焰根部有一环形平面火焰,起着固定点火源 的作用,称之为点火环; 点火环形成的原因及作用分析: 点火环形成的原因是由于靠近射流壁面附近气流速度 及火焰传播速度分布不均匀的缘故。 部分预混层流火焰的稳定 稳定:混气流速恰当时火焰挂在管口上。 离焰、脱火:增加混气流速,火焰锥变长。火焰在一 定距离以外燃烧;流速进一步加大时,火焰锥会被吹 灭即脱火。回火:混气流速减小时,火焰锥变短。当流速减小 时,则会发生回火。黄焰: 燃烧不完全有黑烟产生。 脱火极限 : 对于某一定组成的燃气空气混合物, 在燃烧时必定存在一个火焰稳定的上限,

19、气流速度达 到此上限值便产生脱火现象,该上限称为脱火极限。 回火极限:燃气空气混合物还存在一个火焰稳定的 下限,气流速度低于下限值便产生回火现象,该下限 称为回火极限。部分预混层流火焰的稳定的影响因素(1)一次空气系数的影响a , v 脱火 a , v 回火 先后(2)燃烧器直径的影响 d,v脱火 , v 回火 (3)燃气性质的影响 燃气的火焰传播速度大,易回火,速度慢 易脱火。(4)周围空气质量与流动状况的影响。 完全预混式燃烧燃烧特点:(1)容积热强度大;(2)火焰清洁(3)火焰短(4)氮氧化物少缺点:发生回火 熄火:热负荷小于 1/3 额定热负荷 燃烧过程强化的途径(1)预热燃气和空气(

20、2)加强紊动(3)烟气再循环(4)应用旋转射流 减少氮氧化物的主要途径:降低火焰温度、减少过剩 空气系数强化方法 (1)分段燃烧:空气分燃烧器、燃烧室上方两部分送 入(2)烟气再循环:低温烟气与燃烧用空气在燃烧器前 混合( 3)设计新型燃烧器(4)采用催化燃烧 第五章思考题1. 燃烧有哪几种燃烧方式?火焰各有什么特点2. 部分预混层流火焰根部点火环如何形成的? 有 何作用3. 扩散式火焰的长度如何计算?4. 层流扩散火焰与紊流扩散火焰结构与其特点5. 部分预混层流火焰的不稳定现象有哪些? 在何种 情况下发生?6. 火孔直径、一次空气系数、燃气性质对火焰稳定 性有何影响7. 脱火极限与回火极限如

21、何定义?周边速度梯度理 论 如何解释脱、回火现象8. 强化燃烧的途径有哪些?哪些途径在实践中用的较 多且容易实现?9. 氮氧化物有哪些危害?燃烧中的氮氧化物如何形成?10. 目前国际、国内在燃烧上所采用的减少氮氧化物的 技术有哪些? 第六章扩散式燃烧器 燃烧器的分类 ( 一 ) 按一次空气系数分类1 扩散式燃烧器: 燃气和空气不预混,一次空 气系数 a =0。2 大气式燃烧器: 燃气和一部分空气预先混 合, a=020 8。3 完全预混式燃烧器 :燃气和空气完全预混, a ' 1。(二) 按空气的供给方法分类1 引射式燃烧器:空气被燃气射流吸人或者燃气被 空气射流吸人。 2鼓风式燃烧器

22、:用鼓风设备将空气送入燃烧系统。3 自然引风式燃烧器:靠炉膛中的负压将空气吸人 燃烧系统。(三) 按燃气压力分类1低压燃烧器: 燃气压力在 5000Pa 以下。2高(中)压燃烧器:燃气压力在 5000Pa至 3x105Pa之 间。第六章 思考题1. 自然引风式扩散燃烧器有哪些优缺点?应用范围如 何?扩散式燃烧的特点扩散燃烧的优点是燃烧稳定,不会发生回火现象, 脱火极限值比较大,易于着火燃烧。而扩散燃烧的缺 点是燃烧速度慢,火焰温度低,常出现化学未完全燃 烧产物:尤其在燃烧碳氢化合物含量高的燃气时,在 高温下,由于氧气供应不足,致使碳氢化合物会分解 出游离的碳粒及很难燃烧的重碳氢化合物。 应用范

23、围:沸水器 热水器 纺织业 食品业 小型采暖 锅炉、点火器 指示性燃烧器2. 鼓风式扩散燃烧器有哪些优缺点?应用范围如何? 优点 1. 结构紧凑、体型轻巧 、占地面积小2. 热负荷调节范围大,调节系数一般大于5。3. 可以预热燃气和空气4. 要求燃气压力较低5. 容易实现煤粉 -燃气、油 -燃气的联合燃烧 缺点 1. 需要鼓风、耗费电能2. 燃烧室容积热强度相对小,需要较大的燃烧室3. 本生不具备燃气与空气比例调节特性,需配备调节 装置3. 如今自然引风式扩散燃烧器与鼓风式扩散燃烧器有 哪些新的形式与应用领域?火孔燃烧能力:火孔能稳定和完全燃烧的燃气量。通 常用火孔热强度和气流速度表示。燃烧器

24、头部的静压力:混合气体在头部必须有一定的 静压力,该静压力由引射器提供,是燃烧器的重要设 计参数。 静压力消耗于三个方面:克服流动阻力、克 服热阻、获得所要求的流出速度 质量引射系数的计算ma a v0umgs引射器的特性方程式h 2 2 K 2 (1 u)(1 us)H FF2最佳无因次面积:Fop K(1 u)(1 us)最大无因次压力:maxFop大气式燃烧器的自动调节特性 燃烧器的引射能力只与燃烧器的结构有关,与燃烧工 况无关。燃气引射空气量随工作状况不同而自动调节。 燃烧器常数燃气流量、密度、压力变化对燃烧器工作参数 一次空气系数、质量引射系数、 气流速度的影响。 L g(1 u)(

25、1 us) s09FtCH K K1F12 C第七章大气式燃烧器 大气式燃烧器 的构造及工作原理 燃烧器由两大部分组成:引射器和头部 工作原理:燃气引射一次空气 引射器的作用有以下三方面: 第一、以高能量的气体引射低能量的气体,并使两者 混合均匀。第二、在引射器末端形成所需的剩余压力。 第三、输送一定的燃气量,以保证燃烧器所需的热负 荷。引射器一般由四部分组成 : 燃料喷嘴、吸气收缩管、 混合管和扩压管。(1)喷嘴的流量计算Lg大气式燃烧器的头部设计原则1. 稳定燃烧:不离焰、不回火、不出现黄焰2. 满足加热工艺的需要L g 0.0035 d2 Hav0us第七章 思考题1. 大气式燃烧器由哪

26、几部分组成?这些部分都有哪些 作用?2. 固定喷嘴与可调喷嘴各有哪些优缺点?分别适用于 哪些燃烧器?3. 各种火孔形式及其适用的燃烧器形式?4. 目前在民用与工业燃烧器中有哪些形式的大气式燃 烧器?5. 大气式燃烧器的头部设计应遵循哪些原则?6. 在火孔深度、火孔间距、火孔排数设计中应考虑哪 些因素?7. 燃烧器的头部静压力由哪几部分组成?8. 火孔热强度与火孔气流速度有何关系?9. 能量在常压吸气低压引射器的收缩管、混合管、扩 压管中如何转换?10. 低压引射式大气式燃烧器的自动调节特性如何理 解?11. 燃烧器常数在实践工作中有哪些作用?第八章完全预混式燃烧器 根据完全预混燃烧方法设计制做

27、的燃烧器称为完全预 混式燃烧器。此种燃烧器在燃烧之前燃气与空气实现 完全预混,即过剩空气系数 = 1,通常 =1.05 1.10 。其构造由混合装置和头部两部分组成 喷头是保证燃烧器工作稳定、防止回火的重要部件。 喷头常做成渐缩形 .火道:使燃烧稳定、防止脱火的重要部件 完全预混式燃烧器的特点及应用范围 优点1. 燃烧完全,化学不完全燃烧物授少;2. 过剩空气系数较小, =1.05 1.10 ,当用于工业炉 内直接加热工件时,不会引起工件过分氧化,产品质 量好3. 燃烧温度高,容易满足高温加热工艺要求;4. 燃烧热强度大,可缩小燃烧室容积;5. 火道式完全预混燃烧器,能燃烧低热值燃气6. 不需

28、要鼓风,节省电能及鼓风设备。 缺点1. 要求燃气热值和密度稳定:2. 燃烧时发生回火的可能性大,而且调节范围较小;3. 对于热负荷大的燃烧器,结构庞大而笨重;4. 高压和高负荷时噪声较大。 此种燃烧器主要应用在工业加热装置上。第十章燃气互换性 燃气的互换性:设某一燃具以 a 燃气为基准进行设计 和调整,由于某种原因要以 s 燃气置换 a 燃气,如果 燃烧器此时不加任何调整而能保证燃具正常工作,则 表示 s 燃气可以置换 a 燃气,或称 s 燃气对 a 燃气而 言具有“互换性”。a 燃气称为“基准气”, s 燃气称为“置换气” 反之 如果燃具不能正常工作,则称s 燃气“对 a 燃气而言 没有互换

29、性。燃具适应性:指燃具对燃气性质变化的适应能力。 如果燃具在燃气性质变化较大的范围情况下仍能正常 工作,就称为适应性大,反之称为适应能力小。 互换性主要考虑燃气在民用燃具上能够互换。燃气在互换时的两个评价指标:热负荷(华白数)、 燃烧稳定(燃烧势)华白数华白数是代表燃气特性的一个参数,华白数又称热负 荷指数。华白数相同的燃气在同一压力、同一燃具上 燃烧热负荷相同。结论:1. 燃具的热负荷与华白数成正比2. 燃具的一次空气系数与华白数成反比。3. 燃气互换时华白数 W的变化范围不大于± 5%-10%。 燃烧势 对于互换性研究来说,最主要的因素是燃气性质和一 次空气系数,这两者在很大程度上决定了燃烧速度。 内焰高度是一个表示燃烧工况的重要参数它与火焰稳 定性和燃烧完全度有密切关系离焰、回火和 CO三条极限取决于与内焰高度有关的因 素。燃气按其燃烧特性可以分为三族。第一族为传统的人 工煤气类型。第二族为天然气类型。第三族为液化石 油气类型。不同族的燃气是不能完全互换的。 同一族的两种燃气则有可能完全互换。燃气性质变化引起工作点飘移W 增大, qp增大 ,a ' 减小,工作点向左上方飘移 W减小,q p减小 , a '增大,工作点向右下方飘移 燃气性质变化后,工作点与极限曲线都变化,变

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论