版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第一节 定积分的概念和性质 一、定积分问题举例 二、定积分的定义 三、定积分的性质 四、小结abxyo? a曲边梯形由连续曲线曲边梯形由连续曲线实例实例1 1 (求曲边梯形的面积)(求曲边梯形的面积))(xfy )0)( xf、x轴轴与与两两条条直直线线ax 、bx 所所围围成成.一、定积分问题举例)(xfy abxyoabxyo用矩形面积近似取代曲边梯形面积用矩形面积近似取代曲边梯形面积显然,小矩形越多,矩形总面积越接近显然,小矩形越多,矩形总面积越接近曲边梯形面积曲边梯形面积(四个小矩形)(四个小矩形)(九个小矩形)(九个小矩形)观察下列演示过程,注意当分割加细时,观察下列演示过程,注意当
2、分割加细时,矩形面积和与曲边梯形面积的关系矩形面积和与曲边梯形面积的关系播放播放曲边梯形如图所示,曲边梯形如图所示,,1210bxxxxxabann 个分点,个分点,内插入若干内插入若干在区间在区间abxyoi ix1x1 ix1 nx;,11 iiiiixxxxxnba长度为长度为,个小区间个小区间分成分成把区间把区间,上任取一点上任取一点在每个小区间在每个小区间iiixx ,1 iiixfa )( 为高的小矩形面积为为高的小矩形面积为为底,为底,以以)(,1iiifxx iniixfa )(1 曲边梯形面积的近似值为曲边梯形面积的近似值为iniixfa )(lim10 时,时,趋近于零趋近
3、于零即小区间的最大长度即小区间的最大长度当分割无限加细当分割无限加细)0(,max,21 nxxx曲边梯形面积为曲边梯形面积为实例实例2 2 (求变速直线运动的路程)(求变速直线运动的路程) 设某物体作直线运动,已知速度设某物体作直线运动,已知速度)(tvv 是是时间间隔时间间隔,21tt上上t的一个连续函数,且的一个连续函数,且0)( tv,求物体在这段时间内所经过的路程,求物体在这段时间内所经过的路程.思路思路:把整段时间分割成若干小段,每小段上:把整段时间分割成若干小段,每小段上速度看作不变,求出各小段的路程再相加,便速度看作不变,求出各小段的路程再相加,便得到路程的近似值,最后通过对时
4、间的无限细得到路程的近似值,最后通过对时间的无限细分过程求得路程的精确值分过程求得路程的精确值(1)分割)分割212101tttttttnn 1 iiitttiiitvs )( 部分路程值部分路程值某时刻的速度某时刻的速度(2)求和)求和iinitvs )(1 (3)取极限)取极限,max21nttt iniitvs )(lim10 路程的精确值路程的精确值设设函函数数)(xf在在,ba上上有有界界,记记,max21nxxx ,如如果果不不论论对对,ba在在,ba中任意插入中任意插入若若干干个个分分点点bxxxxxann 1210把把区区间间,ba分分成成n个个小小区区间间,各各小小区区间间的
5、的长长度度依依次次为为1 iiixxx,), 2 , 1( i,在在各各小小区区间间上上任任取取一点一点i (iix ),),作作乘乘积积iixf )( ), 2 , 1( i并作和并作和iinixfs )(1 ,二、定积分的定义定义定义怎怎样样的的分分法法, baidxxf)(iinixf )(lim10 被积函数被积函数被积表达式被积表达式积分变量积分变量积分区间积分区间,ba也也不不论论在在小小区区间间,1iixx 上上点点i 怎样的取法,怎样的取法,只只要要当当0 时时,和和s总趋于总趋于确定的极限确定的极限i,我我们们称称这这个个极极限限i为为函函数数)(xf在在区区间间,ba上上的
6、的定定积积分分,记为记为积分上限积分上限积分下限积分下限积分和积分和注意:注意:(1) 积积分分值值仅仅与与被被积积函函数数及及积积分分区区间间有有关关, badxxf)( badttf)( baduuf)((2)定义中区间的分法和)定义中区间的分法和i 的取法是任意的的取法是任意的.(3 3)当函数)当函数)(xf在区间在区间,ba上的定积分存在时,上的定积分存在时,而而与与积积分分变变量量的的字字母母无无关关.称称)(xf在区间在区间,ba上上可积可积. 当当函函数数)(xf在在区区间间,ba上上连连续续时时,定理定理1 1定理定理2 2 设函数设函数)(xf在区间在区间,ba上有界,上有
7、界,称称)(xf在在区区间间,ba上上可可积积. .且且只只有有有有限限个个间间断断点点,则则)(xf在在区区间间,ba上上可可积积. .存在定理存在定理, 0)( xf baadxxf)(曲边梯形的面积曲边梯形的面积, 0)( xf baadxxf)(曲边梯形的面积曲边梯形的面积的负值的负值1a2a3a4a4321)(aaaadxxfba 定积分的几何意义定积分的几何意义几何意义:几何意义:积取负号积取负号轴下方的面轴下方的面在在轴上方的面积取正号;轴上方的面积取正号;在在数和数和之间的各部分面积的代之间的各部分面积的代直线直线的图形及两条的图形及两条轴、函数轴、函数它是介于它是介于xxbx
8、axxfx ,)( 例例1 1 利用定义计算定积分利用定义计算定积分.102dxx 解解将将1 , 0n等等分分,分分点点为为nixi ,(ni, 2 , 1 ) 小区间小区间,1iixx 的长度的长度nxi1 ,(ni, 2 , 1 )取取iix ,(ni, 2 , 1 )iinixf )(1 iinix 21 ,12iniixx nnini121 niin12316)12)(1(13 nnnn,121161 nn n0 dxx 102iinix 210lim nnn121161lim.31 对定积分的对定积分的补充规定补充规定:(1)当)当ba 时,时,0)( badxxf;(2)当当ba
9、 时时, abbadxxfdxxf)()(.说明说明 在下面的性质中,假定定积分都存在下面的性质中,假定定积分都存在,且不考虑积分上下限的大小在,且不考虑积分上下限的大小三、定积分的性质证证 badxxgxf)()(iiinixgf )()(lim10 iinixf )(lim10 iinixg )(lim10 badxxf)(.)( badxxg badxxgxf)()( badxxf)( badxxg)(.(此性质可以推广到有限多个函数作和的情况)(此性质可以推广到有限多个函数作和的情况)性质性质1 1 babadxxfkdxxkf)()( (k为为常常数数).证证 badxxkf)(ii
10、nixkf )(lim10 iinixfk )(lim10 iinixfk )(lim10 .)( badxxfk性质性质2 2 badxxf)( bccadxxfdxxf)()(.补充补充:不论:不论 的相对位置如何的相对位置如何, 上式总成立上式总成立.cba,例例 若若, cba cadxxf)( cbbadxxfdxxf)()( badxxf)( cbcadxxfdxxf)()(.)()( bccadxxfdxxf(定积分对于积分区间具有可加性)(定积分对于积分区间具有可加性)则则假设假设bca 性质性质3 3dxba 1dxba ab .则则0)( dxxfba. . )(ba 证证
11、, 0)( xf, 0)( if), 2 , 1(ni , 0 ix, 0)(1 iinixf,max21nxxx iinixf )(lim10 . 0)( badxxf性质性质4 4性质性质5 5如如果果在在区区间间,ba上上0)( xf,例例 1 1 比较积分值比较积分值dxex 20和和dxx 20的大小的大小.解解令令,)(xexfx 0, 2 x, 0)( xf, 0)(02 dxxexdxex 02,02dxx 于是于是dxex 20.20dxx 性质性质5 5的推论:的推论:证证),()(xgxf , 0)()( xfxg, 0)()( dxxfxgba, 0)()( babad
12、xxfdxxg于是于是 dxxfba )( dxxgba )(.则则dxxfba )( dxxgba )(. . )(ba 如如果果在在区区间间,ba上上)()(xgxf ,(1)dxxfba )(dxxfba )(.)(ba 证证, )()()(xfxfxf ,)()()(dxxfdxxfdxxfbababa 即即dxxfba )(dxxfba )(.说明:说明: 可积性是显然的可积性是显然的.|)(xf|在区间在区间,ba上的上的性质性质5 5的推论:的推论:(2)设设m及及m分分别别是是函函数数证证,)(mxfm ,)( bababamdxdxxfdxm).()()(abmdxxfabm
13、ba (此性质可用于估计积分值的大致范围)(此性质可用于估计积分值的大致范围)则则 )()()(abmdxxfabmba . .)(xf在在区区间间,ba上上的的最最大大值值及及最最小小值值,性质性质6 6例例 2 2 估估计计积积分分dxx 03sin31的的值值.解解,sin31)(3xxf , 0 x, 1sin03 x,31sin31413 x,31sin31410030dxdxxdx .3sin31403 dxx例例 3 3 估估计计积积分分dxxx 24sin的的值值.解解,sin)(xxxf 2sincos)(xxxxxf 2)tan(cosxxxx 2,4 x, 0 )(xf在
14、在2,4 上上单单调调下下降降,故故4 x为为极极大大点点,2 x为为极极小小点点,22)4( fm,2)2( fm,442 ab,422sin4224 dxxx.22sin2124 dxxx如如果果函函数数)(xf在在闭闭区区间间,ba上上连连续续,证证mdxxfabmba )(1)()()(abmdxxfabmba 由闭区间上连续函数的介值定理知由闭区间上连续函数的介值定理知则则在在积积分分区区间间,ba上上至至少少存存在在一一个个点点 ,使使dxxfba )()(abf . . )(ba 性质性质7 7(定积分中值定理)(定积分中值定理)积分中值公式积分中值公式在区间在区间,ba上至少存
15、在一个点上至少存在一个点 ,使使,)(1)( badxxfabfdxxfba )()(abf .)(ba 在区间在区间,ba上至少存在一上至少存在一个点个点 ,即即积分中值公式的几何解释:积分中值公式的几何解释:xyoab )( f使使得得以以区区间间,ba为为以以曲曲线线)(xfy 底底边边,为曲边的曲边梯形的面积为曲边的曲边梯形的面积等于同一底边而高为等于同一底边而高为)( f的的一一个个矩矩形形的的面面积积。五、小结定积分的实质定积分的实质:特殊和式的极限:特殊和式的极限定积分的思想和方法:定积分的思想和方法:分割分割化整为零化整为零求和求和积零为整积零为整取极限取极限精确值精确值定积分
16、定积分求近似以直(不变)代曲(变)求近似以直(不变)代曲(变)取极限取极限定积分的性质定积分的性质(注意估值性质、积分中值定理的应用)(注意估值性质、积分中值定理的应用)典型问题典型问题()估计积分值;()估计积分值;()不计算定积分比较积分大小()不计算定积分比较积分大小思考题思考题1将和式极限:将和式极限: nnnnnn)1(sin2sinsin1lim表示成定积分表示成定积分.思考题思考题1解答解答原式原式 nnnnnnnnsin)1(sin2sinsin1lim ninnin1sin1limnninin 1sinlim1.sin10 xdxix i 思考题思考题2 定积分性质中指出,若
17、定积分性质中指出,若)(),(xgxf在在,ba上都可积,则上都可积,则)()(xgxf 或或)()(xgxf在在,ba上也可积。这一性质之逆成立吗?为什么?上也可积。这一性质之逆成立吗?为什么?思考题思考题2解答解答 由由)()(xgxf 或或)()(xgxf在在,ba上上可可积积,不不能能断断言言)(),(xgxf在在,ba上上都都可可积积。 为无理数为无理数,为有理数为有理数xxxf0, 1)( 为无理数为无理数,为有理数为有理数xxxg1, 0)(显然显然)()(xgxf 和和)()(xgxf在在1 , 0上可积,但上可积,但)(),(xgxf在在1 , 0上都不可积。上都不可积。例例
18、一、一、 填空题:填空题:1 1、 函数函数)(xf 在在 ba ,上的定积分是积分和的极限,上的定积分是积分和的极限,即即 badxxf)(_ . .2 2、 定积分的值只与定积分的值只与_及及_有关,而与有关,而与_的记法无关的记法无关 . .3 3、 定积分的几何意义是定积分的几何意义是_ . .4 4、 区间区间 ba ,长度的定积分表示是长度的定积分表示是_ . .二、二、 利用定积分的定义计算由抛物线利用定积分的定义计算由抛物线,12 xy两直线两直线)(,abbxax 及横轴所围成的图形的面积及横轴所围成的图形的面积 . .三、三、 利用定积分的定义计算积分利用定积分的定义计算积
19、分 baxdx,)(ba . .练练 习习 题题 1四、四、 利用定积分的几何意义,说明下列等式:利用定积分的几何意义,说明下列等式:1 1、41102 dxx ; ;2 2、 2022cos2cosxdxxdx ; ;五、五、 水利工程中要计算拦水闸门所受的水压力,已知水利工程中要计算拦水闸门所受的水压力,已知闸门上水的闸门上水的是是压强压强 p的的水深水深 h函数,且有函数,且有)(8 . 92米米千千米米hp ,若闸门高,若闸门高米米3 h,宽,宽米米2 l,求水面与闸门顶相齐时闸门所受的水,求水面与闸门顶相齐时闸门所受的水压力压力p(见教材图(见教材图 5-35-3). .一、一、1
20、1、 niiixf10)(lim ; 2 2、被积函数、被积函数, ,积分区间积分区间, ,积分变量;积分变量;3 3、介于曲线、介于曲线)(xfy , ,轴轴x, ,直线直线bxax ,之间之间 各部分面积的代数和;各部分面积的代数和;4 4、 badx. .二、二、abab )(3133. .三、三、)(2122ab . .五、五、88.2(88.2(千牛千牛).).练习题练习题1答案答案一、一、 填空题:填空题: 1 1、 如果积分区间如果积分区间 ba ,被点被点c分成分成 bcca,与与,则,则定积分的可加性为定积分的可加性为 badxxf)(_; 2 2、 如果如果 baxf,)(在在上的最大值与最小值分别为上的最大值与最小值分别为mm与与,则,则 abdxxf)(有如下估计式:有如下估计式:_ _; 3 3、 时时当当ba ,我们规定,我们规定 badxxf)(与与 abdxxf)(的关的关系是系是_; 4 4、 积分中值公式积分中值公式 badxxf)()(,)(baabf 的几何意义是的几何意义是 _; 练练 习习 题题 25 5、 下下列列两两积积分分的的大大小小关关系系是是: (1 1) 102dxx_ _ _ _ _ _ 103dxx (2 2) 21ln xdx_ _ _ _ _ _ _ _ 212)(lndxx (3 3
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024预制板购销合同
- 2025年度瓷砖研发中心实验室建设与运营合同3篇
- 2025年度危险化学品储存安全管理承包合同4篇
- 2025年度智能物流中心建设与运营管理合同4篇
- 2025年度商业地产租赁代理服务合同模板4篇
- 2024物业项目策划2024委托代理合同
- 2025年度医疗器械代生产加工合同范本4篇
- 2025年度特殊用途车牌租赁与押金管理协议4篇
- 2025年度展会现场安保及应急预案服务合同3篇
- 2024铁路钢轨铺设及维护工程协议细则
- 劳动合同续签意见单
- 大学生国家安全教育意义
- 2024年保育员(初级)培训计划和教学大纲-(目录版)
- 河北省石家庄市2023-2024学年高二上学期期末考试 语文 Word版含答案
- 企业正确认识和运用矩阵式管理
- 分布式光伏高处作业专项施工方案
- 陈阅增普通生物学全部课件
- 检验科主任就职演讲稿范文
- 人防工程主体监理质量评估报告
- 20225GRedCap通信技术白皮书
- 燃气有限公司客户服务规范制度
评论
0/150
提交评论