版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、 单调性(1)函数的单调性定义及判定方法函数的性 质定义图象判定方法函数的单调性如果对于属于定义域I内某个区间上的任意两个自变量的值x1、x2,当x1< x2时,都有f(x1)<f(x2),那么就说f(x)在这个区间上是增函数(1)利用定义(2)利用已知函数的单调性(3)利用函数图象(在某个区间图 象上升为增)(4)利用复合函数如果对于属于定义域I内某个区间上的任意两个自变量的值x1、x2,当x1< x2时,都有f(x1)>f(x2),那么就说f(x)在这个区间上是减函数(1)利用定义(2)利用已知函数的单调性(3)利用函数图象(在某个区间图象下降为减)(4)利用复合函
2、数单调性是与“区间”紧密相关的概念,对于一个函数,它在某区间上可能有单调性,也可能没有单调性,例如函数y=x+ ,它在区间(- ,0上没有单调性,而在0,+ )上是增函数。有的函数不具备单调性,如函数y= ,它的定义域为R,但它不具备单调性;再如函数y=x+1,x Z,它的定义域不是区间,也不能说它在定义域上具有单调性。函数的单调性具有可逆性,即 在区间D上单调递增,则 ,且 ,有 ;反之亦然。复合函数的单调性:在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数。对于复合函数,令,若为增,为增,则为增;若为减,为减,则为增
3、;若为增,为减,则为减;若为减,为增,则为减最大(小)值定义一般地,设函数的定义域为,如果存在实数满足:(1)对于任意的,都有;(2)存在,使得那么,我们称是函数 的最大值,记作一般地,设函数的定义域为,如果存在实数满足:(1)对于任意的,都有;(2)存在,使得那么,我们称是函数的最小值,记作 奇偶性函数的奇偶性定义及判定方法函数的性 质定义图象判定方法函数的奇偶性如果对于函数f(x)定义域内任意一个x,都有f(x)=f(x),那么函数f(x)叫做奇函数(1)利用定义(要先判断定义域是否关于原点对称)(2)利用图象(图象关于原点对称)如果对于函数f(x)定义域内任意一个x,都有f(x)=f(x
4、),那么函数f(x)叫做偶函数(1)利用定义(要先判断定义域是否关于原点对称)(2)利用图象(图象关于y轴对称)若函数为奇函数,且在处有定义,则奇函数在轴两侧相对称的区间增减性相同,偶函数在轴两侧相对称的区间增减性相反用定义判断函数奇偶性的方法 幂函数(1)幂函数的定义 一般地,函数叫做幂函数,其中为自变量,是常数(2) 幂函数的图象(3)幂函数的性质图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象幂函数是偶函数时,图象分布在第一、二象限(图象关于轴对称);是奇函数时,图象分布在第一、三象限(图象关于原点对称);是非奇非偶函数时,图象只分布在第一象限过定点:所有的幂函数在都有定义,并
5、且图象都通过点 单调性:如果,则幂函数的图象过原点,并且在上为增函数如果,则幂函数的图象在上为减函数,在第一象限内,图象无限接近轴与轴奇偶性:当为奇数时,幂函数为奇函数,当为偶数时,幂函数为偶函数图象特征:幂函数,当时,若,其图象在直线下方,若,其图象在直线上方,当时,若,其图象在直线上方,若,其图象在直线下方 指数函数函数名称指数函数定义函数且叫做指数函数图象定义域值域过定点图象过定点,即当时,奇偶性非奇非偶单调性在上是增函数在上是减函数函数值的变化情况变化对图象的影响在第一象限内,越大图象越高;在第二象限内,越大图象越低对数函数(1)对数的定义若,则叫做以为底的对数,记作,其中叫做底数,叫做真数负数和零没有对数对数式与指数式的互化:(2)几个重要的对数恒等式(3)常用对数与自然对数常用对数:,即;自然对数:,即(其中)(4) 对数的运算性质函数名称对数函数定义函数且叫做对数函数图象定义域值域过定点图象过定点,即当时,奇偶性非奇非偶单调性在上是增函数在上是减函数函数值的变化情况变化对图象的影响在第一象限内,越大图象越靠低;在第四象限内,越大图象越靠高 反函数设函数的定义域为,值域为,从式子中解出,得式子如果对于在中的任何一个值,通过式子,在中都有唯一确定的值和它对应,那么式子表示是的函数,函数叫做函数的反函数,记作,习惯上改写成(7)反函数的求法确定反函数的定义域,即原函数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024至2030年中国发电、电焊两用机组数据监测研究报告
- 2024年中国烧烤网片市场调查研究报告
- 2024年中国智能高低浓度沼气传感器市场调查研究报告
- 2024年中国地铁专用连接栓市场调查研究报告
- 2024年中国全颗粒仿石材抛光砖市场调查研究报告
- 2024年中国乌冈备长炭市场调查研究报告
- 2024八年级数学上册第12章一次函数12.2一次函数第4课时上课课件新版沪科版
- 2024年昆明客运资格证考几个科目
- 2024年威海货运资格证模拟考试题
- 2024年杭州客运证模拟考试题库答案解析
- 大学生劳动教育概论智慧树知到期末考试答案章节答案2024年南昌大学
- 2023-2024学年山西省太原市高二上学期期中学业诊断数学试卷
- 网络安全技能竞赛(CTF)考试题库-下(多选、判断题)
- 2024-2030年中国留学服务行业深度分析及发展战略研究咨询报告
- 期中复习(易错50题20个考点)-苏科版八年级《数学》上册重难点专题提优训练(解析版)
- 《生物安全培训》课件-2024鲜版
- 网课智慧树知道《英美文学(山东第一医科大学)》章节测试答案
- 急性胰腺炎急诊诊治专家共识2024解读
- 体育学院《排球选项课》教案
- JT∕T 324-2022 汽车喷烤漆房
- 专题 常考的规律探究问题 中考数学答题技巧与模板构建
评论
0/150
提交评论