版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、精选优质文档-倾情为你奉上二次函数应用题及压轴题1(2014眉山)“丹棱冻粑”是眉山著名特色小吃,产品畅销省内外,现有一个产品销售点在经销时发现:如果每箱产品盈利10元,每天可售出50箱;若每箱产品涨价1元,日销售量将减少2箱(1)现该销售点每天盈利600元,同时又要顾客得到实惠,那么每箱产品应涨价多少元?(2)若该销售点单纯从经济角度考虑,每箱产品应涨价多少元才能获利最高?2(2014台州)某公司经营杨梅业务,以3万元/吨的价格向农户收购杨梅后,分拣成A、B两类,A类杨梅包装后直接销售;B类杨梅深加工后再销售A类杨梅的包装成本为1万元/吨,根据市场调查,它的平均销售价格y(单位:万元/吨)与
2、销售数量x(x2)之间的函数关系如图;B类杨梅深加工总费用s(单位:万元)与加工数量t(单位:吨)之间的函数关系是s=12+3t,平均销售价格为9万元/吨(1)直接写出A类杨梅平均销售价格y与销售量x之间的函数关系式;(2)第一次,该公司收购了20吨杨梅,其中A类杨梅有x吨,经营这批杨梅所获得的毛利润为w万元(毛利润=销售总收入经营总成本)求w关于x的函数关系式;若该公司获得了30万元毛利润,问:用于直销的A类杨梅有多少吨?(3)第二次,该公司准备投入132万元资金,请设计一种经营方案,使公司获得最大毛利润,并求出最大毛利润3(2014盘锦)某旅游景点的门票价格是20元/人,日接待游客500人
3、,进入旅游旺季时,景点想提高门票价格增加盈利经过市场调查发现,门票价格每提高5元,日接待游客人数就会减少50人设提价后的门票价格为x(元/人)(x20),日接待游客的人数为y(人)(1)求y与x(x20)的函数关系式;(2)已知景点每日的接待成本为z(元),z与y满足函数关系式:z=100+10y求z与x的函数关系式;(3)在(2)的条件下,当门票价格为多少时,景点每日获取的利润最大?最大利润是多少?(利润=门票收入接待成本)4(2014本溪)国家推行“节能减排,低碳经济”政策后,低排量的汽车比较畅销,某汽车经销商购进A,B两种型号的低排量汽车,其中A型汽车的进货单价比B型汽车的进货单价多2万
4、元花50万元购进A型汽车的数量与花40万元购进B型汽车的数量相同,销售中发现A型汽车的每周销量yA(台)与售价x(万元/台)满足函数关系式yA=x+20,B型汽车的每周销量yB(台)与售价x(万元/台)满足函数关系式yB=x+14(1)求A、B两种型号的汽车的进货单价;(2)已知A型汽车的售价比B型汽车的售价高2万元/台,设B型汽车售价为t万元/台每周销售这两种车的总利润为W万元,求W与t的函数关系式,A、B两种型号的汽车售价各为多少时,每周销售这两种车的总利润最大?最大总利润是多少万元?5(2014青岛)某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销据市场调查,销
5、售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本(1)求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式;(2)求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?(3)如果该企业要使每天的销售利润不低于4000元,且每天的总成本不超过7000元,那么销售单价应控制在什么范围内?(每天的总成本=每件的成本×每天的销售量)6(2014牡丹江)某体育用品商店试销一款成本为50元的排球,规定试销期间单价不低于成本价,且获利不得高于40%经试销发现,销售量y(个)与销售单价x(元)之间满足如图所示的一次函数关系(
6、1)试确定y与x之间的函数关系式;(2)若该体育用品商店试销的这款排球所获得的利润Q元,试写出利润Q(元)与销售单价x(元)之间的函数关系式;当试销单价定为多少元时,该商店可获最大利润?最大利润是多少元?(3)若该商店试销这款排球所获得的利润不低于600元,请确定销售单价x的取值范围7(2014荆州)我国中东部地区雾霾天气趋于严重,环境治理已刻不容缓我市某电器商场根据民众健康需要,代理销售某种家用空气净化器,其进价是200元/台经过市场销售后发现:在一个月内,当售价是400元/台时,可售出200台,且售价每降低10元,就可多售出50台若供货商规定这种空气净化器售价不能低于300元/台,代理销售
7、商每月要完成不低于450台的销售任务(1)试确定月销售量y(台)与售价x(元/台)之间的函数关系式;并求出自变量x的取值范围;(2)当售价x(元/台)定为多少时,商场每月销售这种空气净化器所获得的利润w(元)最大?最大利润是多少?8(2014义乌市)受国内外复杂多变的经济环境影响,去年1至7月,原材料价格一路攀升,义乌市某服装厂每件衣服原材料的成本y1(元)与月份x(1x7,且x为整数)之间的函数关系如下表:月份x1234567成本(元/件)565860626466688至12月,随着经济环境的好转,原材料价格的涨势趋缓,每件原材料成本y2(元)与月份x的函数关系式为y2=x+62(8x12,
8、且x为整数)(1)请观察表格中的数据,用学过的函数相关知识求y1与x的函数关系式(2)若去年该衣服每件的出厂价为100元,生产每件衣服的其他成本为8元,该衣服在1至7月的销售量p1(万件)与月份x满足关系式p1=0.1x+1.1(1x7,且x为整数); 8至12月的销售量p2(万件)与月份x满足关系式p2=0.1x+3(8x12,且x为整数),该厂去年哪个月利润最大?并求出最大利润9(2014莆田)某水果店销售某种水果,由历年市场行情可知,从第1月至第12月,这种水果每千克售价y1(元)与销售时间第x月之间存在如图1(一条线段)的变化趋势,每千克成本y2(元)与销售时间第x月满足函数关系式y2
9、=mx28mx+n,其变化趋势如图2所示(1)求y2的解析式;(2)第几月销售这种水果,每千克所获得利润最大?最大利润是多少?10(2014西宁)今年5月1日起实施青海省保障性住房准入分配退出和运营管理实施细则规定:公共租赁住房和廉租住房并轨运行(以下简称并轨房),计划10年内解决低收入人群住房问题已知第x年(x为正整数)投入使用的并轨房面积为y百万平方米,且y与x的函数关系式为y=x+5由于物价上涨等因素的影响,每年单位面积租金也随之上调假设每年的并轨房全部出租完,预计第x年投入使用的并轨房的单位面积租金z与时间x满足一次函数关系如下表:时间x(单位:年,x为正整数)12345单位面积租金z
10、(单位:元/平方米)5052545658(1)求出z与x的函数关系式;(2)设第x年政府投入使用的并轨房收取的租金为W百万元,请问政府在第几年投入使用的并轨房收取的租金最多,最多为多少百万元?11(2014扬州)某店因为经营不善欠下38400元的无息贷款的债务,想转行经营服装专卖店又缺少资金“中国梦想秀”栏目组决定借给该店30000元资金,并约定利用经营的利润偿还债务(所有债务均不计利息)已知该店代理的品牌服装的进价为每件40元,该品牌服装日销售量y(件)与销售价x(元/件)之间的关系可用图中的一条折线(实线)来表示该店应支付员工的工资为每人每天82元,每天还应支付其它费用为106元(不包含债
11、务)(1)求日销售量y(件)与销售价x(元/件)之间的函数关系式;(2)若该店暂不考虑偿还债务,当某天的销售价为48元/件时,当天正好收支平衡(收人=支出),求该店员工的人数;(3)若该店只有2名员工,则该店最早需要多少天能还清所有债务,此时每件服装的价格应定为多少元?12(2014鄂州)大学生小张利用暑假50天在一超市勤工俭学,被安排销售一款成本为40元/件的新型商品,此类新型商品在第x天的销售量p件与销售的天数x的关系如下表:x(天)12350p(件)11811611420销售单价q(元/件)与x满足:当1x25时q=x+60;当25x50时q=40+(1)请分析表格中销售量p与x的关系,
12、求出销售量p与x的函数关系(2)求该超市销售该新商品第x天获得的利润y元关于x的函数关系式(3)这50天中,该超市第几天获得利润最大?最大利润为多少?13(2014本溪)如图,直线y=x4与x轴、y轴分别交于A、B两点,抛物线y=x2+bx+c经过A、B两点,与x轴的另一个交点为C,连接BC(1)求抛物线的解析式及点C的坐标;(2)点M在抛物线上,连接MB,当MBA+CBO=45°时,求点M的坐标;(3)点P从点C出发,沿线段CA由C向A运动,同时点Q从点B出发,沿线段BC由B向C运动,P、Q的运动速度都是每秒1个单位长度,当Q点到达C点时,P、Q同时停止运动,试问在坐标平面内是否存
13、在点D,使P、Q运动过程中的某一时刻,以C、D、P、Q为顶点的四边形为菱形?若存在,直接写出点D的坐标;若不存在,说明理由14(2014铁岭)如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a0)与x轴交于A(6,0),C(4,0)两点,与y轴交于点B(0,3)(1)求抛物线的解析式;(2)点D、点E同时从点O出发以每秒1个单位长度的速度分别沿x轴正半轴,y轴正半轴向点A、点B方向移动,当点D运动到点A时,点D、E同时停止移动过点D作x轴的垂线交抛物线于点F,交AB于点G,作点E关于直线DF的对称点E,连接FE,射线DE交AB于点H设运动时间为t秒t为何值时点E恰好在抛物线上,并求此时D
14、EF与ADG重叠部分的面积;点P是平面内任意一点,若点D在运动过程中的某一时刻,形成以点A、E、D、P为顶点的四边形是菱形,那么请直接写出点P的坐标15(2014哈尔滨)如图,在平面直角坐标中,点O为坐标原点,直线y=x+4与x轴交于点A,过点A的抛物线y=ax2+bx与直线y=x+4交于另一点B,且点B的横坐标为1(1)求a,b的值;(2)点P是线段AB上一动点(点P不与点A、B重合),过点P作PMOB交第一象限内的抛物线于点M,过点M作MCx轴于点C,交AB于点N,过点P作PFMC于点F,设PF的长为t,MN的长为d,求d与t之间的函数关系式(不要求写出自变量t的取值范围);(3)在(2)
15、的条件下,当SACN=SPMN时,连接ON,点Q在线段BP上,过点Q作QRMN交ON于点R,连接MQ、BR,当MQRBRN=45°时,求点R的坐标16(2014宜宾)如图,已知抛物线y=x2+bx+c的顶点坐标为M(0,1),与x轴交于A、B两点(1)求抛物线的解析式;(2)判断MAB的形状,并说明理由;(3)过原点的任意直线(不与y轴重合)交抛物线于C、D两点,连接MC,MD,试判断MC、MD是否垂直,并说明理由17(2014乐山)如图,抛物线y=x22mx(m0)与x轴的另一个交点为A,过P(1,m)作PMx轴于点M,交抛物线于点B点B关于抛物线对称轴的对称点为C(1)若m=2,
16、求点A和点C的坐标;(2)令m1,连接CA,若ACP为直角三角形,求m的值;(3)在坐标轴上是否存在点E,使得PEC是以P为直角顶点的等腰直角三角形?若存在,求出点E的坐标;若不存在,请说明理由18(2014西宁)如图,抛物线y=x2+x2交x轴于A,B两点(点A在点B的左侧),交y轴于点C,分别过点B,C作y轴,x轴的平行线,两平行线交于点D,将BDC绕点C逆时针旋转,使点D旋转到y轴上得到FEC,连接BF(1)求点B,C所在直线的函数解析式;(2)求BCF的面积;(3)在线段BC上是否存在点P,使得以点P,A,B为顶点的三角形与BOC相似?若存在,求出点P的坐标;若不存在,请说明理由19(
17、2014自贡)如图,已知抛物线y=ax2x+c与x轴相交于A、B两点,并与直线y=x2交于B、C两点,其中点C是直线y=x2与y轴的交点,连接AC(1)求抛物线的解析式;(2)证明:ABC为直角三角形;(3)ABC内部能否截出面积最大的矩形DEFG?(顶点D、E、F、G在ABC各边上)若能,求出最大面积;若不能,请说明理由20(2014黔东南州)如图,直线y=x+2与抛物线y=ax2+bx+6(a0)相交于A(,)和B(4,m),点P是线段AB上异于A、B的动点,过点P作PCx轴于点D,交抛物线于点C(1)求抛物线的解析式;(2)是否存在这样的P点,使线段PC的长有最大值?若存在,求出这个最大
18、值;若不存在,请说明理由;(3)求PAC为直角三角形时点P的坐标21(2014德州)如图,在平面直角坐标系中,已知点A的坐标是(4,0),并且OA=OC=4OB,动点P在过A,B,C三点的抛物线上(1)求抛物线的解析式;(2)是否存在点P,使得ACP是以AC为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由;(3)过动点P作PE垂直于y轴于点E,交直线AC于点D,过点D作x轴的垂线垂足为F,连接EF,当线段EF的长度最短时,求出点P的坐标22(2014襄阳)如图,在平面直角坐标系中,矩形OCDE的三个顶点分别是C(3,0),D(3,4),E(0,4)点A在DE上,以
19、A为顶点的抛物线过点C,且对称轴x=1交x轴于点B连接EC,AC点P,Q为动点,设运动时间为t秒(1)填空:点A坐标为_;抛物线的解析式为_(2)在图中,若点P在线段OC上从点O向点C以1个单位/秒的速度运动,同时,点Q在线段CE上从点C向点E以2个单位/秒的速度运动,当一个点到达终点时,另一个点随之停止运动当t为何值时,PCQ为直角三角形?(3)在图中,若点P在对称轴上从点A开始向点B以1个单位/秒的速度运动,过点P做PFAB,交AC于点F,过点F作FGAD于点G,交抛物线于点Q,连接AQ,CQ当t为何值时,ACQ的面积最大?最大值是多少?23(2014河南)如图,抛物线y=x2+bx+c与
20、x轴交于点A(1,0),B(5,0)两点,直线y=x+3与y轴交于点C,与x轴交于点D点P是x轴上方的抛物线上一动点,过点P作PFx轴于点F,交直线CD于点E设点P的横坐标为m(1)求抛物线的解析式;(2)若PE=5EF,求m的值;(3)若点E是点E关于直线PC的对称点,是否存在点P,使点E落在y轴上?若存在,请直接写出相应的点P的坐标;若不存在,请说明理由24(2014六盘水)如图,二次函数y=x2+bx+c的图象交x轴于A、D两点,并经过B点,已知A点坐标是(2,0),B点的坐标是(8,6)(1)求二次函数的解析式(2)求函数图象的顶点坐标及D点的坐标(3)该二次函数的对称轴交x轴于C点连接BC,并延长BC交抛物线于E点,连接BD,DE,求BDE的面积(4)抛物线上有一个动点P,与A,D两点构成ADP,是否存在SADP=SBCD?若存在,请求出P点的坐标;若不存在请说明理由25(2014兰州)如图,抛物线y=x2+mx+n与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A(1,0),C(0,2)(1)求抛物线的表达式;(2)在抛物线的对称轴上是否存在点P,使PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024高考历史一轮复习方案专题十世界资本主义经济政策的调整和苏联社会主义建设专题整合备考提能教学案+练习人民版
- DB42-T 2338-2024 地质调查阶段海相页岩气选区评价技术要求
- 泰州市专业技术人员公修科目“沟通与协调能力”测试题及答案
- (3篇)2024年幼儿园读书节活动总结
- 物资的管理和控制措施
- 二零二五版「鸿诚担保招聘」人才测评与评估服务合同2篇
- 发起人与设立中公司
- 2024年海南工商职业学院高职单招职业适应性测试历年参考题库含答案解析
- 二零二五年度环保PPP项目合同风险防控与应对策略
- 2024年陇南市人民医院高层次卫技人才招聘笔试历年参考题库频考点附带答案
- 2024年贵州省铜仁市中考文科综合试卷真题
- 实际控制人与法人协议模板
- 医疗器械质量安全风险会商管理制度
- 110kV变电站及110kV输电线路运维投标技术方案(第一部分)
- 绿色制造与可持续发展技术
- 污水处理厂单位、分部、分项工程划分
- 舌咽神经痛演示课件
- 子宫内膜癌业务查房课件
- 社会学概论课件
- 华为经营管理-华为的研发管理(6版)
- C及C++程序设计课件
评论
0/150
提交评论