版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、统计学练习题( 3)第9章1下面的陈述错误的是(D )。A 相关系数是度量两个变量之间线性关系强度的统计量B 相关系数是一个随机变量C .相关系数的绝对值不会大于1D .相关系数不会取负值2 根据你的判断,下面的相关系数取值错误的是(C )。A . -0.86B . 0.78C 1.25D 03下面关于相关系数的陈述中错误的是(A )。A 数值越大说明两个变量之间的关系就越强B 仅仅是两个变量之间线性关系的一个度量,不能用于描述非线性关系C 只是两个变量之间线性关系的一个度量,不一定意味着两个变量之间存在因果关系D 绝对值不会大于14 .如果相关系数r=0 ,则表明两个变量之间(C )。A 相
2、关程度很低B 不存在任何关系C 不存在线性相关关系D 存在非线性相关关系5 在回归模型y= 3)+ 3ix+冲,&反映的是(C )。A .由于x的变化引起的y的线性变化部分B 由于y的变化引起的x的线性变化部分C 除x和y的线性关系之外的随机因素对 y的影响1#D .由于x和y的线性关系对y的影响6 在回归分析中,F检验主要是用来检验A .相关系数的显著性C 线性关系的显著性7 说明回归方程拟合优度的统计量主要是(A 相关系数C 判定系数&回归平方和占总平方和的比例称为(A 相关系数C 判定系数9 .下面关于判定系数的陈述中不正确的是(A 回归平方和占总平方和的比例C .取值范
3、围是0, 110 .下面关于估计标准误差的陈述中不正确白C )。B .回归系数的显著性D 估计标准误差的显著性C )。B.回归系数D 估计标准误差C )。B.回归系数D 估计标准误差B )。B .取值范围是-1 , 1D 评价回归方程拟合优度的一个统计量D )。23A .均方残差(MSE )的平方根B .对误差项£的标准差6的估计C 排除了 x对y的线性影响后,y随机波动大小的一个估计量D 度量了两个变量之间的关系强度11.残差平方和 SSE反映了 y的总变差中( B )。A. 由于x与y之间的线性关系引起的y的变化部分B .除了 x对y的线性影响之外的其他因素对y变差的影响C .由
4、于x与y之间的非线性关系引起的y的变化部分D.由于x与y之间的函数关系引起的y的变化部分12 若变量x与y之间的相关系数r=0.8,则回归方程的判定系数R2等于( C )。A . 0.8B. 0.89C . 0.64D . 0.40第10章A 总体线性关系的显著性C 样本线性关系的显著性2.在多元线性回归模型中,若自变量 的取值(A)。1 .在多兀线性回归分析中,t检验是用来检验(B)。B .各回归系数的显著性D . Ho:31=役=,= 金=0,%对因变量y的影响不显著,那么它的回归系数 3 iB .可能为1D .可能大于1A .可能接近0C .可能小于03. 在多元线性回归方程 乂二订凶:
5、2X2 "中,回归系数 表示(B A .自变量Xi变动一个单位时,因变量 y的平均变动量为-ky的总变动总量为B .其他变量不变的条件下,自变量 Xi变动一个单位时,因变量 y的平均变动量为C .其他变量不变的条件下,自变量Xi变动一个单位时,因变量D .因变量y变动一个单位时,自变量 Xi的变动总量为 4 在多元回归分析中,通常需要计算调整的多重判定系数R2,这样可以避免R2的值(A )。A .由于模型中自变量个数的增加而越来越接近1B .由于模型中自变量个数的增加而越来越接近0C .由于模型中样本量的增加而越来越接近1D .由于模型中样本量的增加而越来越接近05 .在多元线性回归
6、分析中,如果F检验表明线性关系显著,则意味着(A )。A .在多个自变量中至少有一个自变量与因变量之间的线性关系显著B .所有的自变量与因变量之间的线性关系都显著C .在多个自变量变中至少有一个自变量与因变量之间的线性关系不显著D .所有的自变量与因变量之间的线性关系都不显著6.在多元线性回归分析中,如果t检验表明回归系数 3 i不显著,则意味着( C )。A .整个回归方程的线性关系不显著B .整个回归方程的线性关系显著C 自变量Xi与因变量之间的线性关系不显著D 自变量Xi与因变量之间的线性关系显著7 在多元线性回归分析中,多重共线性是指模型中(A )。A 两个或两个以上的自变量彼此相关B
7、 两个或两个以上的自变量彼此无关C .因变量与一个自变量相关D .因变量与两个或两个以上的自变量相关B )。&在多元线性回归分析中,如果F检验表明回归方程的线性关系显著,则(A 表明每个自变量与因变量的关系都显著B 表明至少有一个自变量与因变量的线性关系显著C 意味着每个自变量与因变量的关系都不显著D 意味着至少有一个自变量与因变量的关系不显著9 如果回归模型中存在多重共线性,则(D )。A 整个回归模型线性关系不显著B 肯定有一个回归系数通不过显著性检验C 肯定导致某个回归系数的符号与预期相反D .可能导致某些回归系数通不过显著性检验10如果某个回归系数的正负号与预期相反,则表明(C
8、 )。A 所建立的回归模型是错误的B 该自变量与因变量之间的线性关系不显著C 模型中可能存在多重共线性D 模型中肯定不存在多重共线性11 .虚拟自变量的回归是指在回归模型中含有(A )。A .分类自变量C 分类因变量12 设回归方程的形式为B.数值型自变量D.数值型因变量E(y)=卩o+卩1X,若x是取值为 0, 1的哑变量,A )。A 代表与哑变量值0 所对应的那个分类变量水平的平均值B 代表与哑变量值1 所对应的那个分类变量水平的平均值C 代表与哑变量值1 所对应的那个分类变量水平的平均响应与哑变量值个分类变量水平的平均值D .代表与哑变量值为1所对应的那个分类变量水平的平均响应与哑变量值
9、那个分类变量水平的平均值的差值13在多元线性回归分析中,利用逐步回归法可以(B )。A 避免回归模型的线性关系不显著B 避免所建立的回归模型存在多重共线性C .提高回归方程的估计精度D 使预测更加可靠卩0的意义是0 所对应的那0 所对应的第11章时间序列在长期内呈现出来的某种持续向上或持续下降的变动称为(A .趋势C .循环波动B .季节变动2.只含有随机波动的序列称为(A .平稳序列B. 周期性序列C .季节性序列D.非平稳序列3.季节变动是指时间序列(D 不规则波动6#A 在长时期内呈现出来的某种持续向上或持续下降的变动B 在一年内重复出现的周期性波动C .呈现出的非固定长度的周期性变动D
10、 .除去趋势、周期性和季节性之后的随机波动#4.简单指数平滑法适合于预测(#A .只含随机波动的序列B .含有多种成分的序列#C .含有趋势成分的序列D .含有季节成分的序列#5.移动平均法适合于预测(#A .只含有随机波动的序列B .含有多种成分的序列#C .含有趋势成分的序列D .含有季节成分的序列#6.简单指数平滑法得到的t+1期的预测值等于(B7.8.A. t期的实际观察值与第B. t期的实际观察值与第C. t期的实际观察值与第t+1期的指数平滑值的加权平均值t期的指数平滑值的加权平均值t+1期的实际观察值的加权平均值D . t+1期的实际观察值与第t期的指数平滑值的加权平均值如果现象
11、随着时间的变动按某个常数增加或减少,则适合的预测方法是(A .移动平均B .简单指数平滑C .一元线性模型D .指数模型已知时间序列各期观测值为100, 240, 370, 530, 650, 810,对这一时间序列进行预测适合的模型是(A .直线模型C .多阶曲线模型9.用最小二乘法拟合的直线趋势方程为 移呈现为(B) °B.指数曲线模型D. Holt指示平滑模型X =0t若b为负数,表明该现象随着时间的推A .上升趋势B .下降趋势C .水平趋势D .随机波动710.对某时间序列建立的指数曲线方程为Y =1500 (1.2j,这表明该现象(#A .每期增长率为120%C .每期增
12、长量为1.2个单位11.对某时间序列建立的趋势方程为B .每期增长率为20%D .每期的观测值为1.2个单位Y =100 (0.95)t,表明该序列( DA 没有趋势C 呈指数上升趋势12 如果时间序列适合于拟合趋势方程A 各期观测值按常数增长C 各期增长率按常数增长B呈线性上升趋势D呈指数下降趋势Y = b0 b*,表明该序列( A ) °B.各期观测值按指数增长D各期增长率按指数增长Y = 6 1.5t,这表明( A )°13 对某企业各年的销售额拟合的直线趋势方程为A .时间每增加1年,销售额平均增加B 时间每增加1年,销售额平均减少C 时间每增加1年,销售额平均增加
13、D 下一年度的销售额为1.5个单位14 对某一时间序列拟合的直线趋势方程为 值应该( C )。A 接近于1C 接近于015 对某一时间序列拟合的直线趋势方程为 ( A )。A 没有趋势C 有下降趋势16.残差自相关是指不同点的时间序列(A .观测值之间的相关1.5个单位1.5个单位1.5%丫 = d M,如果该数列中没有趋势,则b的B .小于1D .小于0诂二b0 b1t,如果b等于零,则表明该序列B 有上升趋势D 有非线性趋势B )°B 残差之间的相关C .预测值之间的相关D .观测值有线性趋势17.使用Durbin-Watson统计量的d的临界值表检验自相关时(B )°
14、A .如果统计量dv dL,拒绝原假设,不存在自相关B 如果统计量d v dL,拒绝原假设,存在自相关C .如果统计量d > du,拒绝原假设,存在自相关D .如果统计量dv dU,拒绝原假设,不存在自相关918对时间序列的数据作季节调整的目的是(A .消除时间序列中季节变动的影响C 消除时间序列中趋势的影响19 如果某个月份的商品销售额为84万元,月的销售额为(B )°A. 60万元C. 90.8万元20. Holt指数平滑预测适合于(BA .平稳序列C .含有季节波动的序列21. Win ter指数平滑预测适合于( DA .平稳序列A )°B .描述时间序列中季节
15、变动的影响D .消除时间序列中随机波动的影响 该月的季节指数等于 1.2,在消除季节因素后该B. 70万元D . 100.8 万元)°B .含有趋势的序列D .含有趋势和季节波动的序列)°B .含有趋势的序列#10C .含有季节波动的序列D 含有趋势和季节波动的序列#22. 如果 一个 时间 序列不 存 在自 相关 ,那 么,所 有 (或大 多数 ) 自相 关系 数都落 在 ( A )。A. 95的区间内B. 95的区间之外C. 90的区间内D. 90的区间之外23. 如果一个时间序列不存在自相关,那么,自相关图中的各个条应该随机分布在95的置信区间内,而且随着滞后期的增加
16、趋于(B )。D. 0.5C. -1 第 12 章1. 下列关于主成分分析的表述不正确的是(C )。A 主成分分析的目的是找出少数几个主成分代表原来的多个变量B 用于主成分分析的多个变量之间应有较强的相关性C 用于主成分分析的多个变量之间必须是独立的D .所找出的主成分之间是不相关的2. 在主成分分析中,各主成分与原始变量的关系是(B )。A 任何一个主成分都等于所有原始变量的总和B .任何一个主成分都是所有原始变量的线性组合C 任何一个变量都是所有主成分的总和D .任何一个变量都是所有主成分的线性组合3. 在主成分分析中,选择主成分的标准通常是要求所选主成分的累计方差总和占全部方差 的( D
17、 )。A. 50以上C. 70以上4. 主成分分析中的“特征根”反映的是(A 主成分对原始变量的影响程度C .主成分与原始变量之间的相关程度5. 某个特征根占总特征根的比例称为(A .方差C .载荷系数B . 60以上D . 80以上A)。B 原始变量对主成分对的影响程度D .原始变量所解释的主成分信息B)。B .方差贡献率D .因子6. 从特征根 数值的 大小 角 度看,通常要求 所选择 的 主成 分所对 应的 特 征根应 该 ( C )。A .等于0B .等于1C .大于1D .大于07. 因子分析与主成分分析的区别之一就是( C )。A .因子的个数少于主成分的个数B 主成分分析需要事先
18、确定主成分的个数C 因子分析需要事先确定因子的个数D .因子分析的结果更接近实际&变量xi的共同度量反映的是(B )。A 第i个公因子被变量xi所解释的程度B 变量xi的信息能够被k个公因子所解释的程度C 第j个公因子的相对重要程度)。B 相关的D .等均值的KMO统计量的取值( DB .小于1D .在01之间D 第i个变量对公因子的相对重要程度 9用于因子分析的变量必须是(BA .独立的C 等方差的10在因子分析中,检验变量之间相关性的A .小于0由该表可得第C .大于111.下表是根据6个变量进行主成分分析得到的各主成分及其相应的特征根。 一个主成分的方差贡献率为(B )。Comp
19、 onentIn itial Eige nvalues13.51821.1443.5954.3045.2576.183合计6.001A . 3.518%B . 58.62 %C . 77.69%D . 87.60%12.下表是根据6个变量进行因子分析得到的旋转后的因子载荷系数矩阵。由该表可知第个因子所概括的变量是(C )。Comp onent12变量1.909-.020变量2.765.472变量3.491.685变量4.836.314变量5.342.765变量6-.027.904A .变量1.变量2和变量3B .变量1.变量2 .变量3和变量4C .变量1.变量4和变量2D .变量3 .变量5和变量613 .在因子分析中,选择因子的标准通常是要求所选因子的累计方差总和占全部方差的D)。A 50% 以上(1415第12345678B 60% 以上D 80%以上A 等于 0C 大于1因子得分函数是将( D )。A 因子表达为原始变量的总和C 原始变量表达为因子的线性组合13 章B 等于 1D 大于 0B 原始变量表达为因子的总和D 因子表达为标准化变
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 冀少版八年级生物上册第三、四、五章整合练课件
- 企业商务接待规范指南
- 人力资源合规风险防范成本分析
- 北京市礼品合同
- 智能化印刷生产施工合同
- 电力系统升级施工合同范本
- 畜牧业用地租赁合同
- 社区义工活动策划与实施
- 交响乐团指挥聘任合同
- 教育信息化项目投标保证金办法
- 深基坑开挖危险源辨识及控制措施
- DB44∕T 1591-2015 小档口、小作坊、小娱乐场所消防安全整治技术要求
- 外国法制史英国法课件
- 致青春几年的放纵换来的是一生的卑微课件
- 加强服务管理 提升金融服务竞争力
- 初中生物说课课件(精选优秀)PPT
- T∕CSAE 237-2021 重型汽车实际行驶污染物排放测试技术规范
- ETL基础及常用技术培训
- 医疗机构电子化注册信息系统(机构版)用户手册
- 最新部编版语文五年级上册第六单元教案
- 消防设施设备及器材
评论
0/150
提交评论