最新高中数学-人教A版选修1-1教案3.2立体几何中的向量方法第5课时含答案_第1页
最新高中数学-人教A版选修1-1教案3.2立体几何中的向量方法第5课时含答案_第2页
最新高中数学-人教A版选修1-1教案3.2立体几何中的向量方法第5课时含答案_第3页
最新高中数学-人教A版选修1-1教案3.2立体几何中的向量方法第5课时含答案_第4页
最新高中数学-人教A版选修1-1教案3.2立体几何中的向量方法第5课时含答案_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、§3.2.5综合问题【学情分析】:教学对象是高二的学生,学生已经具备空间向量与立方体几何的相关知识,前面已经运用向量解决了一些立体几何问题,本节课是进一步通过坐标与向量来解决立体几何的一些综合问题。由此我们可以继续讨论如何利用已知条件适当建立空间直角坐标系,展示向量方法与坐标方法相结合的优越性。【教学目标】:(1)知识与技能:进一步体会空间向量在解决立体几何问题中的广泛作用,再次熟悉立体几何中的向量方法“三步曲”;继续讨论如何利用已知条件适当建立空间直角坐标系,展示向量方法与坐标方法相结合的优越性;对立体几何中的三种方法(综合法、向量法、坐标法)的联系进行分析与小结(2)过程与方法:

2、在解决问题中,通过数形结合与问题转化的思想方法,加深对相关内容的理解。(3)情感态度与价值观:体会把立方体几何几何转化为向量问题优势,培养探索精神。【教学重点】:坐标法与向量法结合.【教学难点】:适当地建立空间直角坐标系及添加辅助线【教学过程设计】:教学环节教学活动设计意图一、复习引入教师引导学生结合前面的例题从整体上归纳解题过程,留给学生一定时间,使其通过思考能明确认识“三步曲”各阶段的主要任务,并能简明地叙述出来,为对本节后续内容的整体把握作准备坐标法。立体几何中的向量方法可以归纳为三步:( l )把几何问题转化为向量问题;( 2 )进行向量运算; 3 )由向量运算解释几何问题。有助于加强

3、学生对解题通法的整体认识二、问题与探究一、问题探究问题1 :阅读课本上的例4 ,请你找出其中的已知条件和求解问题这些求解问题能用向量方法解决吗?学生独立阅读并分析题意,教师引导学生认识到本题具有一定的综合性,需要证明直线与平面平行、垂直和计算二面角,而这些问题都可以利用向量解决问题2 :从例4 的已知条件和求解问题看,你认为应怎样把问题向量化?如果建立坐标系,应怎样建立?教师引导学生关注己知条件中有“三条线段两两垂直且彼此相等”这一条件,使学生由此联想到选择这些线段所在直线为坐标轴、以线段长(正方形边长)为单位长度建立空间直角坐标系,并意识到这是适合本题的坐标化方法教师要求学生写出点p , a

4、 , , d , e 的坐标并进一步写出 等的坐标问题3 :考虑例4 ( 1 ) ,要证平面,应如何入手?教师从“平面”出发,启发学生考虑直线与平面平行的判定条件,引导学生通过讨论发现pa 与有平行关系,从而自然地想到写出 的坐标,并由k 证出 ,进而证出平面。问题4 :考虑例4 ( 2 ) ,要证平面,应如何人手?教师从“平面出发”,启发学生考虑直线与平而垂直的判定条件,让学生讨论:应证明pb 与哪些线段垂直,用向量方法怎样证?在讨论的基础上,由学生自己写出主要证明过程,即(已知)· , ,平面问题5 :考虑例4( 3 ) ,求二面角的大小,应如何人手?教师从“计算二面角c 一pb

5、 一d 的大小”出发,启发学生如何找出相应的平面角,让学生讨论:哪个角是二面角c 一pb 一d 的平面角,用向量方法怎样计算它的大小?教师引导学生考虑:点f 的坐标对计算是否垂要?怎样利用题中条件确定点f 的坐标?让学生通过讨论写出确定点f 坐标的过程,再进一步考虑并表达通过cos efd 计算ef 的过程问题6 :考虑例4 后的思考题 学生结合刚讨论过的例题,对思考题进行思考和讨沦,教师适当点拨引导注意不要就题论题,而要透过例题看到解题中的基本想法二、问题解答解:如课本图所示建立空间直角坐标系,点d为坐标原点,设dc=1(1)证明:连结ac,ac交bd于点g,连结eg三、小结立体几何中的不同

6、方法教师引导学生进行归纳,了解各种方法的特点及联系,认识到应根据问题的条件选择合适的方法,而不是生搬硬套通过阅读题目,使学生明确题中所给出的条件和求解的问题,从需要完成的任务理出本题可以用向最解决的大体思路初步建立已知条件与求解内容两者间的联系,使学生意识到通过把向量坐标化解决问题,培养他们结合题中条件建立适当坐标系的能力找出这条直线的过程可以锻炼直觉观察能力;证明两线平行可以巩固对直线的方向向量、共线向量等概念的理解找出这两条直线的过程可以锻炼分析已知条件以及看图能力;证明直线间的垂直关系的过程可以巩固对两非零向量的 “数量积为0 ”的几何意义的认识。计算二面角的大小,首先要找出其平面角,转

7、而计算平面角的大小计算角的大小时,向量是非常有力的工具解决这个问题可以巩固对运用向量方法求角度的掌握思考题1 可以使学生进一步体会向量方法中坐标化对简化计算所起的作用思考题2 可以加强不同方法之间的联系加深对不同方法(综合法、向量法、坐标法)的特点和联系的认识三、训练与提高1,练习题3 。(解略) 2,如图,四面体abcd中,o、e分别是bd、bc的中点,(i)求证:平面bcd;(ii)求异面直线ab与cd所成角的余弦值。解:(i)略(ii)以o为原点,如图建立空间直角坐标系,则异面直线ab与cd所成角的余弦值为。学生进行提高训练应用.四、小结解决立体几何问题的三种方法:1, 综合方法;2,

8、向量方法;3, 坐标方法。反思归纳五、作业习题3. a 组9、10、 12 题。练习与测试:(基础题)1,过正方形的顶点,引平面,若,则平面和平面所成的二面角的大小是( )a b c d答:b2,设p是的二面角内一点,ab为垂足,则ab的长为 ( )a b c d 答:c3,如下图,已知空间四边形oabc,其对角线为ob、ac,m、n分别是对边oa、bc的中点,点g在线段mn上,且分mn所成的定比为2,现用基向量、表示向量,设=x+y+z,则x、y、z的值分别为a.x=,y=,z=b.x=,y=,z=c.x=,y=,z=d.x=,y=,z=解析:=,=,=(+)=+,=+,=+,=+=+ +.

9、答案:d4.在正方体abcda1b1c1d1中,棱长为a,m、n分别为a1b和ac上的点,a1m=an=a,则mn与平面bb1c1c的位置关系是a.相交b.平行c.垂直d.不能确定解析:因为正方体的棱长为a,故面对角线a1b=ac=a.而a1m=an=a,所以m、n分别是a1b和ac上的三等分点.在b1b、bc上各取点e、f,使得b1e=bf=a.则= +.但=()=,= ()=,+= + =+=0,=,即mnef,mn平面bb1c1c.答案:b(中等题)5,如图,在长方体abcda1b1c1d1中,已知ab= 4, ad =3, aa1= 2. e、f分别是线段ab、bc上的点,且eb= f

10、b=1,.求直线ec1与fd1所成的余弦值.解:以分别为轴建立坐标系,则e(3,3,0)、c1(0,4,2)、 d1(0,0,2)、f(2,4,0).从而(3,1,2)、(2,4,2) 所以直线ec1与fd1所成的余弦值为 6,在直三棱柱中,底面是等腰直角三角形,侧棱,分别是,与的中点,点在平面上的射影是的重心,(1)求与平面所成角的正弦值;(2)求点到平面的距离解:建立如图的空间直角坐标系,设,则,分别是,与的中点, ,是的重心,平面,得,且与平面所成角,(2)是的中点,到平面的距离等于到平面的距离的两倍,平面,到平面的距离等于小结:根据线段和平面的关系,求点到平面的距离可转化为求到平面的距

11、离的两倍(难题)7,如图,在棱长为1的正方体abcda1b1c1d1中,e、f分别是d1d、bd的中点,g在棱cd上,且cg=cd,h为c1g的中点,应用空间向量的运算方法解决下列问题.(1)求证:efb1c;(2)求ef与c1g所成的角的余弦;(3)求fh的长.分析:本题主要利用空间向量的基础知识,证明异面直线垂直,求异面直线所成的角及线段的长度.解:如图建立空间直角坐标系oxyz,d为坐标原点o,依据已知有e(0,0,),f(,0),c(0,1,0),c1(0,1,1),b1(1,1,1),g(0,0) (1)证明:=(,0)(0,0,)=(,),=(0,1,0)(1,1,1)=(1,0,1), 由·=×(1)+×0+()×(1)=0,  得,efb1c.(2)解: =(0,0)(0,1,1)=(0,1),|= =, 由(1)得|=, 且·=&

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论