一元二次方程教案_第1页
一元二次方程教案_第2页
一元二次方程教案_第3页
一元二次方程教案_第4页
一元二次方程教案_第5页
已阅读5页,还剩60页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、教案一元二次方程1.1 建立一元二次方程模型教学目标 1、在把实际问题转化为一元二次方程的模型的过程中,形成对一元二次方程的感性认识。 2、理解一元二次方程的定义,能识别一元二次方程。 3、知道一元二次方程的一般形式,能熟练地把一元二次方程整理成一般形式,能写出一般形式的二次项系数、一次项系数和常数项。重点难点重点:能建立一元二次方程模型,把一元二次方程整理成一般形式。难点:把实际问题转化为一元二次方程的模型。教学过程(一)创设情境前面我们曾把实际问题转化成一元一次方程和二元一次方程组的模型,大家已经感受到了方程是刻画现实世界数量关系的工具。本节课我们将继续进行建立方程模型的探究。 1、展示课

2、本p.2问题一 引导学生设人行道宽度为xm,表示草坪边长为35-2xm,找等量关系,列出方程。(35-2x)2=900 2、展示课本p2问题二 引导思考:小明与小亮第一次相遇以后要再次相遇,他们走的路程有何关系?怎样用他们再次相遇的时间表示他们各自行驶的路程? 通过思考上述问题,引导学生设经过ts小明与小亮相遇,用s表示他们各自行驶的路程,利用路程方面的等量关系列出方程2t+ 0.01t2=3t。 3、能把,化成右边为0,而左边是只含有一个未知数的二次多项式的形式吗?让学生展开讨论,并引导学生把,化成下列形式: 4x2-140x+325=0, 0.01t2-2t=0。 (二)探究新知1、观察上

3、述方程和,启发学生归纳得出: 如果一个方程通过移项可以使右边为0,而左边是只含有一个未知数的二次多项式,那么这样的方程叫作一元二次方程,它的一般形式是:ax2+bx+c=0,(a,b,c是已知数且a0), 其中a,b,c分别叫作二次项系数、一次项系数、常数项。 2、让学生指出方程,中的二次项系数、一次项系数和常数项。(三)讲解例题例1:把方程(x+3)(3x-4)=(x+2)2化成一般形式,并指出它的二次项系数、一次项系数和常数项。 解去括号,得 3x2+5x-12=x2+4x+4, 化简,得 2x2+x-16=0。 二次项系数是2,一次项系数是1,常数项是-16。 点评:一元二次方程的一般形

4、式ax2+bx+c=0(a0)具有两个特征:一是方程的右边为0,二是左边二次项系数不能为0。此外要使学生认识到:二次项系数、一次项系数和常数项都是包括符号的。例2:下列方程,哪些是一元一次方程?哪些是一元二次方程?(1) 2x+3=5x-2; (2) x2=25;(3) (x-1)(x-2)=x2+6; (4) (x+2)(3x-1)=(x-1)2。解方程(1),(3)是一元一次方程;方程(2),(4)是一元二次方程。点评:通过一元一次方程与一元二次方程的比较,使学生深刻理解一元二次方程的意义。(四)应用新知课本p4,练习第3题,(五)课堂小结 1、一元二次方程的显著特征是:只有一个未知数,并

5、且未知数的最高次数是2。 2、一元二次方程的一般形式为:ax2+bx+c=0(a0),一元二次方程的二次项系数、一次项系数、常数项都是根据一般形式确定的。 3、在把实际问题转化为一元二次方程模型的过程中,体会学习一元二次方程的必要性和重要性。 (六)思考与拓展 当常数a,b,c满足什么条件时,方程(a-1)x2-bx+c=0是一元二次方程?这时方程的二次项系数、一次项系数分别是什么?当常数a,b,c满足什么条件时,方程(a-1)x2-bx+c=0是一元一次方程? 当a1时是一元二次方程,这时方程的二次项系数是a-1,一次项系数是-b;当a=1,b0时是一元一次方程。布置作业课本习题1.1中a组

6、第1,2,3题。教学后记:1.2.1 因式分解法、直接开平方法(1)教学目标 1、进一步体会因式分解法适用于解一边为0,另一边可分解成两个一次因式乘积的一元二次方程。 2、会用因式分解法解某些一元二次方程。 3、进一步让学生体会“降次”化归的思想。重点难点重点:,掌握用因式分解法解某些一元二次方程。难点:用因式分解法将一元二次方程转化为一元一次方程。教学过程 (一)复习引入 1、提问:(1) 解一元二次方程的基本思路是什么?(2) 现在我们已有了哪几种将一元二次方程“降次”为一元一次方程的方法? 2、用两种方法解方程:9(1-3x)2=25 (二)创设情境 说明:可用因式分解法或直接开平方法解

7、此方程。解得x1= ,x2=- 。 1、说一说:因式分解法适用于解什么形式的一元二次方程。 归纳结论:因式分解法适用于解一边为0,另一边可分解成两个一次因式乘积的一元二次方程。 2、想一想:展示课本11节问题二中的方程0.01t2-2t =0,这个方程能用因式分解法解吗?(三)探究新知 引导学生探索用因式分解法解方程0.01t2-2t=0,解答课本11节问题二。 把方程左边因式分解,得t(0.01t-2)=0,由此得出t=0或0.01t-2=0 解得 tl=0,t2=200。 t1=0表明小明与小亮第一次相遇;t2=200表明经过200s小明与小亮再次相遇。 (四)讲解例题1、展示课本p8例3

8、。按课本方式引导学生用因式分解法解一元二次方程。2、让学生讨论p9“说一说”栏目中的问题。要使学生明确:解方程时不能把方程两边都同除以一个含未知数的式子,若方程两边同除以含未知数的式子,可能使方程漏根。3、展示课本p9例4。让学生自己尝试着解,然后看书上的解答,交换批改,并说一说在解题时应注意什么。(五)应用新知课本p10,练习。(六)课堂小结1、用因式分解法解一元二次方程的基本步骤是:先把一个一元二次方程变形,使它的一边为0,另一边分解成两个一次因式的乘积,然后使每一个一次因式等于0,分别解这两个一元一次方程,得到的两个解就是原一元二次方程的解。2、在解方程时,千万注意两边不能同时除以一个含

9、有未知数的代数式,否则可能丢失方程的一个根。(七)思考与拓展用因式分解法解下列一元二次方程。议一议:对于含括号的守霜露次方程,应怎样适当变形,再用因式分解法解。(1) 2(3x-2)=(2-3x)(x+1); (2) (x-1)(x+3)=12。解 (1) 原方程可变形为 2(3x-2)+(3x-2)(x+1)=0, (3x-2)(x+3)=0, 3x-2=0,或x+3=0, 所以xl= ,x2=-3 (2) 去括号、整理得 x2+2x-3=12,x2+2x-15=0, (x+5)(x-3)=0, x+5=0或x-3=0, 所以x1=-5,x2=3先让学生动手解方程,然后交流自己的解题经验,教

10、师引导学生归纳:对于含括号的一元二次方程,若能把括号看成一个整体变形,把方程化成一边为0,另一边为两个一次式的积,就不用去括号,如上述(1);否则先去括号,把方程整理成一般形式,再看是否能将左边分解成两个一次式的积,如上述(2)。布置作业教学后记:1.2.1 因式分解法、直接开平方法(2)教学目标1、知道解一元二次方程的基本思路是“降次”化一元二次方程为一元一次方程。2、学会用因式分解法和直接开平方法解形如(ax+b)2-k=0(k0)的方程。3、引导学生体会“降次”化归的思路。重点难点重点:掌握用因式分解法和直接开平方法解形如(ax+b)2-k=0(k0)的方程。难点:通过分解因式或直接开平

11、方将一元二次方程降次为一元一次方程。教学过程 (一)复习引入1、判断下列说法是否正确(1) 若p=1,q=1,则pq=l( ), 若pq=l,则p=1,q=1( );(2) 若p=0,g=0,则pq=0( ), 若pq=0,则p=0或q=0( );(3) 若x+3=0或x-6=0,则(x+3)(x-6)=0( ), 若(x+3)(x-6)=0,则x+3=0或x-6=0( );(4) 若x+3= 或x-6=2,则(x+3)(x-6)=1( ), 若(x+3)(x-6)=1,则x+3= 或x-6=2( )。答案:(1) ,。 (2) ,。 (3),。 (4),。2、填空:若x2=a;则x叫a的 ,

12、x= ;若x2=4,则x= ; 若x2=2,则x= 。答案:平方根, ,2, 。 (二)创设情境前面我们已经学了一元一次方程和二元一次方程组的解法,解二元一次方程组的基本思路是什么?(消元、化二元一次方程组为一元一次方程)。由解二元一次方程组的基本思路,你能想出解一元二次方程的基本思路吗? 引导学生思考得出结论:解一元二次方程的基本思路是“降次”化一元二次方程为一元一次方程。 给出11节问题一中的方程:(35-2x)2-900=0。问:怎样将这个方程“降次”为一元一次方程? (三)探究新知让学生对上述问题展开讨论,教师再利用“复习引入”中的内容引导学生,按课本p6那样,用因式分解法和直接开平方

13、法,将方程(35-2x)2-900=0“降次”为两个一元一次方程来解。让学生知道什么叫因式分解法和直接开平方法。 (四)讲解例题展示课本p7例1,例2。 按课本方式引导学生用因式分解法和直接开平方法解一元二次方程。 引导同学们小结:对于形如(ax+b)2-k=0(k0)的方程,既可用因式分解法解,又可用直接开平方法解。 因式分解法的基本步骤是:把方程化成一边为0,另一边是两个一次因式的乘积(本节课主要是用平方差公式分解因式)的形式,然后使每一个一次因式等于0,分别解两个一元一次方程,得到的两个解就是原一元二次方程的解。 直接开平方法的步骤是:把方程变形成(ax+b)2=k(k0),然后直接开平

14、方得ax+b= 和ax+b=- ,分别解这两个一元一次方程,得到的解就是原一元二次方程的解。 注意:(1) 因式分解法适用于一边是0,另一边可分解成两个一次因式乘积的一元二次方程; (2) 直接开平方法适用于形如(ax+b)2=k(k0)的方程,由于负数没有平方根,所以规定k0,当kb四 课堂练习,巩固提高p 12 练习题 1,2 补充:1 解方程:,2 用配方法证明:无论x为何实数,代数式:的值恒大于0.3 已知,求的值。五反思小结,拓展提高这节课你有什么收获?这节课我们学会了解二次项系数为1的一元二次方程的解法:移-配-解作业:p 19 3 补充:1用配方法解下列方程(1) (2)(3)

15、(3)2如果+8x+a= ,那么( )a a=4, b=16 b a=4 , b=4 c a=2 , b=4 d a =16 , b=43如果,可以配方成的形式,那么( )a p = 3 ,q= -3 b p = 9, q = -3 c p = 9,q= -3 d p = 4,q= -3 1.2.2 配方法(9)教学内容 给出配方法的概念,然后运用配方法解一元二次方程 教学目标 了解配方法的概念,掌握运用配方法解一元二次方程的步骤 通过复习上一节课的解题方法,给出配方法的概念,然后运用配方法解决一些具体题目重难点关键1重点:讲清配方法的解题步骤 2难点:把常数项移到方程右边后,两边加上的常数是

16、一次项系数一半的平方 教具、学具准备 小黑板 教学过程 一、复习引入 (学生活动)解下列方程: (1)x2-8x+7=0 (2)x2+4x+1=0 老师点评:我们前一节课,已经学习了如何解左边含有x的完全平方形式,右边是非负数,不可以直接开方降次解方程的转化问题,那么这两道题也可以用上面的方法进行解题 解:(1)x2-8x+(-4)2+7-(-4)2=0 (x-4)2=9 x-4=3即x1=7,x2=1 (2)x2+4x=-1 x2+4x+22=-1+22 (x+2)2=3即x+2= x1=-2,x2=-2 二、探索新知 像上面的解题方法,通过配成完全平方形式来解一元二次方程的方法,叫配方法 可以看出,配方法是为了降次,把一个一元二次方程转化为两个一元一次方程来解 例1解下列方程 (1)x2+6x+5=0 (2)2x2+6x-2=0 (3)(1+x)2+2(1+x)-4=0 分析:我们已经介绍了配方法,因此,我们解这些方程就可以用配方法来完成,即配一个含有x的完全平方 解:(1)移项,得:x2+6x=-5 配方:x2+6x+32=-5+32(x+3)2=4 由此可得:x+3=2,即x1=-1,x2=-5 (2)移项,得:

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论