DF4D型内燃机车制动部件部分_第1页
DF4D型内燃机车制动部件部分_第2页
DF4D型内燃机车制动部件部分_第3页
DF4D型内燃机车制动部件部分_第4页
DF4D型内燃机车制动部件部分_第5页
已阅读5页,还剩51页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、东风4D型准高速内燃机车检修手册5 电空制动系统5.1 结构简介5.1.1 NPT5型空气压缩机机车装有两台由直流电动机直接驱动的NPT5型空气压缩机。NPT5型空气压缩机是一种三缸、两级压缩、中间空气冷却、往复活塞式空气压缩机,其结构如图5-1所示。图5-1 NPT5型空气压缩机结构图1 机体;2油泵;3, 15低压连杆;4, 7低压活塞;5, 8低压气缸;6空气滤清器;9高压活塞;10高压气缸;11中间冷却器;12冷却风扇;13弹性连轴器;14高压连杆;16曲轴。5.1.1.1 NPT5型空气压缩机主要性能参数容积流量(m3/min)2.4进气压力(kPa)101.325最大排气压力(kP

2、a)900转速(r/min)1000轴功率(kW)21旋转方向逆时针(从油泵端观察)滑油温度()80滑油压力(kPa)44010%气缸数: 一级气缸2二级气缸1活塞行程(mm)130冷却方式风冷5.1.1.2 NPT5型空气压缩机的结构 除直流电动机外, 空压机本身主要由运动机构,进、排气系统,冷却系统,润滑系统等部分组成。5.1.1.2.1 运动机构运动机构包括高、低压活塞, 高、低压连杆,曲轴等主要部件。直流电动机通过弹性联轴器带动空气压缩机旋转, 从而带动装在曲轴中部三个曲拐上的连杆活塞机构作往复运动,以完成吸气、压缩和排气过程。NPT5型空气压缩机运动机构示意图见图 5-2。图5-2

3、NPT5型空气压缩机运动机构示意图1直流电动机;2弹性联轴器;3双排向心球面滚柱轴承;4高压连杆;5高压活塞;6, 8低压活塞;7, 9-低压连杆;10曲轴;11单排向心圆柱轴承。5.1.1.2.2 进、排气系统进、排气系统主要由空气滤清器, 气缸盖, 进、排气阀等组成。空气压缩机的进气必须经过过滤,其过滤装置为油浴式空气滤清器。空气滤清器的作用, 直接关系到空气压缩机的正常运转和使用寿命。因此在运用、维修过程中, 必须予以足够的重视。新装或经过检修清洗后的滤网再组装时,应先在润滑油中浸渍,并去掉多余的积油。图5-3为油浴式空气滤清器示意图, 图5-4为气缸盖进、排气道示意图。图5-3 油浴式

4、空气滤清器示意图图5-4 气缸盖进、排气道示意图5.1.1.2.3 冷却系统冷却系统包括中间冷却器、安全阀和轴流式冷却风扇等主要部件。空气经一级压缩后,温度显著增高,必须采取降温措施,否则, 在二级压缩过程中,将使空气温度达到空气压缩机不能工作的程度。因此, 空气压缩机装有中间冷却器,以便使空气在一级压缩后得到冷却。冷却风扇由三角皮带驱动。在运用中,皮带的长度会有所伸长,应经常予以调整。调整的方法是: 松开风扇支架与上、下集气箱相连接的4个螺栓, 将风扇支架向上移动, 或松开风扇轴后部的螺母, 将风扇体向上移动。由于风扇支架或风扇体的向上移动, 使两个皮带的中心距发生变化。这样, 就可以满足皮

5、带所需要的张紧力。为保证空气压缩机的安全,在中间冷却器下方装有安全阀,安全阀的调整压力为450kPa开启,大于300kPa时关闭。中间冷却器下方还装有排水堵,每周应将排水阀打开一次(在空气压缩机运转时进行)。5.1.1.2.4 润滑系统在曲轴轴端装有齿轮油泵,依靠油泵产生的压力油送往各润滑表面。齿轮油泵主要由两个相同模数和相同齿数的齿轮副以及泵体、泵盖、定压阀等组成, 如图5-5所示。图5-5 齿轮油泵1泵体;2泵盖;3, 6压油齿轮;4定压阀弹簧;5定压阀;7螺钉。 带有一定压力的油, 还通过油泵盖进入油压表, 以显示油压。同时,还与定压阀相连通,以防止油压过高。定压阀的结构原理如图5-6所

6、示。油泵的正常工作压力应调整在44010%kPa范围内。当油压过高或过低时, 可将油泵解体, 根据需要减少或增加调整垫3, 即可使油压稳定在所规定的范围内。 注意:空气压缩机润滑油的油位应保持在“最高”与“最低”标志之间,要经常注意空气压缩机的油压是否在规定范围,并应按时打开冷却器的排水阀, 排除积水。图5-6 油泵定压阀工作原理1通油泵排油腔;2回油孔;3调整垫;4定压阀;5定压弹簧。5.1.2空气干燥装置5.1.2.1 空气干燥器原理及性能JKG1型空气干燥器是一种无热再生双塔式可连续工作的压缩空气除湿装置。机车上以该干燥器为核心,与其它辅助设备,如:散热管(器)、油水分离器、电磁排污阀等

7、,构成机车空气干燥装置,用以清除压缩空气中的油分、水分、尘埃等有害杂质。图5-7为JKG1空气干燥器工作原理图。经处理的压缩空气,可达到下述净化指标: (1)空气的相对湿度RH35%; (2)含尘埃的颗粒度不大于10m; (3)含油率不超过10ppm。经过净化的空气,可避免机车车辆空气管系发生冻结和锈蚀现象,亦可防止因空气中的杂质引起制动失灵。因此,采用本装置对保证行车安全、延长制动机检修周期和使用寿命,将获得良好的效果。图5-7 JKG1型空气干燥器工作原理图P1进气管(自空气压缩机来);P2出气管(到总风缸去);Ap Bp排气管(排大气)。 本装置在工作中,具有“定时转换”、“时间累计”和

8、“状态记忆”等多种功能,可适应机车空气压缩机各种工况。同时,两塔在交替工作过程中,具有“柔性转换”的特性,可减少气流对干燥剂的冲击和避免粉末进入管系。此外装置的结构参数和工作参数选配合理,在机车各种环境和工况条件下,均能输出符合湿度标准的干燥空气。5.1.2.2 主要技术数据处理空气量:5m3/min相对湿度:35%工作压力:5001000kPa进气温度:555环境温度:-2040工作方式:双塔交替,可间歇或连续工作控制方式:电器、机械联合自动控制控制电压:DC 110V(可按用户要求)再生方式:无热、常压再生耗气率:153%干燥剂:材质:高效耐水硅胶或活性氧化铝规格:37球型颗粒颗粒强度:8

9、0N/粒装机质量:22kg/台外形尺寸(长宽高):930474338整机质量:125kg5.1.2.3 结构JKG1型干燥器将高效油水分离器独立设置。干燥器的总体结构如图5-8所示。它由干燥器主体、进气阀、排气阀、出气止回阀、电控器、电空阀等主要部件组成。5.1.2.3.1 干燥器主体干燥器主体由两个结构完全相同的干燥塔组成,所以称之为“双塔式”。JKG1型干燥塔是构成JKG1型干燥器的主体,如图5-9所示。干燥塔为一圆筒钢瓶式结构,上部为塔盖,中部为筒体,下部为封头。图5-9 干燥塔1干燥塔盖;2出气滤网;3出气管弯头;4干燥剂;5干燥器主体;6进气滤筒; 9O形密封圈635.7;10接头体

10、;11O形密封圈635.7;12出气管;13O形密封圈1805.7;14出气滤筒;15压紧弹簧;16进气管。干燥塔上设有三个对外通道口,其中:进气法兰口(J)连接压气机,受进气阀控制;出气法兰口(C)通往总风缸,受出气止回阀控制;接头体(P)通大气,受排气阀控制。干燥塔的背面设有安装座,并通过安装横梁将干燥器安装于机车上。干燥塔内部装有干燥剂(4),用压紧弹簧(15)通过盘状出气滤网(2)将其压实,以防止干燥剂在气流作用下颗粒之间自由摩擦形成粉末。向塔内填装或添加干燥剂时,打开干燥塔盖(1),取出压紧弹簧(15)和出气滤网(2),方可将干燥剂由筒口加入。取出干燥剂时,可从干燥塔下部拆下接头体(

11、10),抽出进气滤筒(6),干燥剂颗粒便可自动流出。干燥塔拆装时应注意:a. 进气管(16)是焊在法兰上的,解体时不可拆卸;b. 接头体(10)与进气滤筒(6)是用粘结剂粘成一体的,装入干燥塔时,应检查确认进气滤筒的头部是否进入弯头口。5.1.2.3.2 进气阀进气阀是控制两干燥塔进气的机构,安装于两干燥塔的进气连接体上,其结构如图5-10所示。图5-10 进气阀1阀体;2阀盖;3O形密封圈453.1;4O形密封圈603.1;5防松螺母;6阀垫;7阀座;8阀杆;9O形密封圈202.4;10阀。进气阀阀体(1)的安装面上有三个通道口,与连接体阀座面上的三个通道口相吻合。其中(J1)、(J2)通左

12、、右干燥塔;(P1)由连接体中部的Rc 1管锥口与来自空气压缩的主管连接。阀体内部装有一个“连动式”鞲鞴阀,控制着这三条通道。阀体两端部的阀盖(2)上,设有Rc1/8管锥口(K1)(K2)。连接来自电空阀的控制风管。当控制风无论从哪端进入阀体时,均会推动鞲鞴向另一端移动,并使该端的进气阀口关闭,切断该干燥塔的进气通路。同时,另一端的阀口打开,开通进入另一干燥塔的进气通道。由于两干燥塔的进气口受鞲鞴阀的连锁控制,故不可能同时进入吸附状态。(注:阀口开启者为吸附状态。)5.1.2.3.3 排气阀排气阀是控制干燥塔“再生”排气的机构,安装于干燥塔底部的接头体上,其结构如图5-11所示。阀体(2)内设

13、有一个受电空阀控制的鞲鞴阀。上盖(1)设有Rc3/4管口(T),通过接头体通往干燥塔。管座(4)设有Rc1/2管口(P),是排气阀的排泄口,可安装消音器或排气管道。排气阀的开启与关闭,受来自电空阀的控制风操纵。当电空阀得电供气时,控制风由阀体上的进气口(K)进入鞲鞴(16)的下方,将鞲鞴(16)连同阀(10)抬起,开启排气阀口,使干燥塔通大气并进入再生状态。当电空阀失电排气时,鞲鞴(16)下方的控制风经电空阀排出,鞲鞴受弹簧(15)的作用下移,关闭排气阀口,切断干燥塔到大气通路,使干燥塔进入吸附状态。图5-11 排气阀1阀盖;2阀体;3螺堵;4管座;5O形密封圈453.1;6螺母;7阀垫;8阀

14、座; 9O形密封圈382.1;10阀;11O形密封圈152.4;12防尘圈;13O形密封圈303.1;14螺钉;15弹簧;16鞲鞴。5.1.2.3.4 出气止回阀出气止回阀是防止总风缸压力空气向干燥塔倒流的机构,安装于干燥器的出气连接体上,其结构如 图5-12所示。图5-12 出气止回阀1阀盖;2O形密封圈543.5;3阀体;4垫圈;5阀垫;6阀座;7阀;8缓冲垫。在阀体(3)内装有两个结构完全相同的止回阀,分别控制着两干燥塔的出气口(C1)、(C2)。干燥塔在吸附状态时,塔内压力高于总风压力,止回阀(7)被顶起,干燥空气经阀口流入总风缸(P2)。干燥塔在再生状态时,因塔内为大气压力,止回阀(

15、7)关闭,阻止总风向干燥塔倒流。 在阀体(3)的安装面上,设有一条通气沟槽,沟通两干燥塔的再生孔(Z),构成一条常通的“再生气路”。在工作中,吸附塔的干燥空气一小部分将由此通道流入再生塔,对干燥剂进行再生。再生空气的流量受再生孔(Z)的控制。5.1.2.3.5 电控器电控器(或称时控器),是控制双塔式空气干燥器交替工作的核心。它根据机车空气压缩机的工况信号,转变为控制执行机构动作的“指令”,使两干燥塔按一定的程序交替工作。5.1.2.3.5.1 结构电控器由“机芯”和“机盒”组成,机芯将电路板、安装板、面板组成一体,可从框式机盒内整体取出。电控器的外部结构如图5-13所示:面板上设有两个指示灯

16、(2),分别显示转换电空阀的得电或失电状态。盒体下方设有电源开关(6)、电源插头(5)、熔断器(4)以及两组(每组两根)输出线。电源插头(5)外接DC110V正、负电源线(V、V)和控制线(VK)。熔断器内装有0.5A管式保险丝。两组输出线则分别连接干燥器上的两转换电空阀(电空阀I、电空阀II)。图5-13 电控器组成1电控器盒;2发光二极管;3印刷板装配;4熔断器;5四芯航空插座;6开关。5.1.2.3.5.2 功能机车空气压缩机的工况是随机变化的,当这些工况以电信号(通电、断电)的形式由控制线(VK)输入电控器后,经过电控器的逻辑处理,将变成有规律的“指令”输出,并通过电空阀来操纵干燥器上

17、的机械阀动作,构成“电气机械”控制系统,使两干燥塔按一定的程序交替工作,并具有以下几种功能。a. 定时转换当电控器接通电源而无控制信号输入时,电控器亦无动作指令输出,而是处于“待命”状态。只有当控制线(VK)有“通电”信号输入时,电控器才开始计时工作,并按一定的时间周期(T),分别对两电空阀“通电”和“断电”。其中得电的电空阀将控制干燥塔进入“再生”状态,而失电的电空阀则使干燥塔处于“吸附”状态。图5-14为电控器工作周期示意图。图5-14 电控器工作周期示意图b. 提前失电电控器在同一工作周期(T)内,对两电空阀的“通电”和“断电”是相互制约的,但时间并不相等,而是保持一个差值(T2),使两

18、电空阀(DF1、DF2)有一个“失电”重叠时间。如上图所示:以图中左边的工作周期为例,相对于转换点(0)来说,DF1在工作周期(T)内分为两个阶段。第一阶段得电(T1),第二阶段失电(T2),用T1T2=T。相对于失电的DF2来说,T2即为两电空阀的失电重叠时间。在两电空阀失电重叠时间内,由于两塔受进气阀的连锁控制,不可能同时进入吸附状态。因此,虽DF1停止了I塔的再生,即排气阀关闭。但只要DF2不得电,进气阀便不能动作,I塔也就不能进入吸附状态。而II塔仍将保持吸附状态,直到DF2得电后,两塔才开始转换。电控器的这一功能,将使干燥器获得“柔性转换”特性,故又称“柔性转换功能”(详见说明书工作

19、原理部分)。c. 时间累计当一个工作周期还未完成而控制电源(VK)断电时,电控器也立即中断工作,停止计时。当(VK)线再次通电时,计时将在原工作时间上累计,直至完成这一工作周期才进行转换。d. 状态记忆工作周期中断时,电控器将其工作状态记存下来,待下次工作时,仍按原状态继续。即原得电的电空阀仍得电,原失电的电空阀继续失电。直至这一工作周期的完成。5.1.2.3.5.3 时间参数与型号电控器是以输出电信号(通电、断电)的时间来控制干燥器工作的。电控器的时间参数如下表:转换周期(T)90s再生时间(T1)72s充气时间(T2)18s5.1.2.3.6 电空阀电空阀是电控器的执行机构,电控器以“供电

20、”和“断电”来控制其工作。同时,电空阀又以“充入”或“排出”控制风来操纵各机械阀动作。当电空阀得电时,下阀口开启,控制风进入各机械阀。当电空阀失电时,下阀口关闭,切断控制风源。同时上阀口开启,将原进入各机械阀的控制风释放大气。DKF1型及DKF2型电空阀,系为本装置研究设计的专用电空阀。其中DKF1用于干燥器的转换;DKF2用于电磁排污阀的控制。这两种电空阀的内部结构及主要技术参数完全相同,只是在接管和安装方式上有所差别,如图5-15所示。图5-15 DKF2型电空阀电空阀的主要技术参数如下:额定电压:DC11010%V功率:14W工作压力:1000kPa接管通径:Dg35.1.2.4 工作原

21、理JKG1型空气干燥器的工作,是由风泵调压器来控制的。因此,装置的各种功能与工作状态,均与空气压缩机的工况相配合。故本装置对机车的各种工况,具有较好的适应性。风泵调压器是机车上将总风缸压力转变为电控信号的装置。当总风压力低于某一设定值(750kPa)时,调压器发出“通电”信号;当总风压力达到另一设定值(900kPa)时,调压器发出“断电”信号。调压器以这两种信号,一方面通过机车上的电控系统来控制空气压缩机的起动与停止。另一方面通过干燥器的“电器机械”控制系统操纵装置的工作。干燥装置“电气机械”控制系统的组成及控制关系如图5-16所示。图5-16 干燥装置“电气机械”控制系统示意图电控器在接受风

22、泵调压器的信号后,转而输出控制电空阀的电信号,并通过电空阀来操纵各机械阀(进气阀、排气阀)的动作。干燥塔根据其进气和排气阀所处的作用位,将形成以下几种状态。a. 停机状态:排气阀关,排气阀随机位。b. 再生状态:排气阀开,进气阀关。c. 充气状态:排气阀关,进气阀关。在风泵调压器的控制下,干燥器的工作程序如下:电风泵起动时,电控器同时得到“通电”信号。电控器使一个电空阀处于“得电供气”状态,另一电控阀处于“失电排气”状态。并以此操纵各自的进、排气阀动作。图5-15中电空阀Ad处于得电供气状态,Bd处于失电排气状态;进气阀的控制鞲鞴右移,阀口Aj关闭,Bj开启;排气阀口Ap开启,Bp关闭。此时,

23、A塔进入再生状态,B塔进入吸附状态。来自空气压缩机的高温、高湿度的压缩空气,经冷却和分离油水粒子后,由进气阀口Bj进入B塔。当气流通过干燥剂床时,空气中的水分子被干燥剂吸附而降低了相对湿度,成为“干燥空气”。干燥空气由B塔出来后,受出气止回阀的控制分为两路:其中大部分经止回阀口Bc进入总风缸;一小部分(约占15%)经阀体上的再生气路进入A塔,在A塔内膨胀为极干的低压“再生空气”。然后流经干燥剂床时,将干燥剂吸附的水分子脱附,并携带水分子由排气阀口Ap排到大气。这样,B塔在吸附的同时,还担负着对A塔的再生。如果B塔没有压缩空气通过,A塔亦无再生空气排出。所以,B塔的吸附与A塔的再生是同时进行的。

24、当A塔再生到设定时间T1时,电控器停止对电空阀Ad供电。这样,两电空阀(Ad、Bd)均处于失电关闭状态,使两排气阀亦处于关闭状态。但进气阀仍保持原作用位,故B塔继续吸附而A塔却停止了再生。虽然B塔的干燥空气仍源源充入A塔,因A塔无排出,致使压力逐渐上升,直至接近B塔。A塔在这段时间内处于“充气状态”。当A塔充气时间达到设定值T2时,电控器开始向电空阀Bd供电。Bd得电后,开启阀口,将控制风充入进、排气阀。一方面推动进气阀控制鞲鞴左移,开启A塔进气阀口Aj,关闭B塔进气阀口Bj。另一方面将B塔的排气阀口Bp开启。这时,A塔进入吸附状态,B塔进入再生状态,干燥器完成了一个工作周期T,且T=T1T2

25、。这里还须说明的是:在A塔转入吸附状态的瞬间,由于在A塔充气时间内已充满了压缩空气,致使进气阀口Aj开启时,里、外压差很小,进气流速缓慢,大大地减少进气气流对干燥剂的冲击,故称为“柔性转换”。柔性转换彻底消除了产生粉末的根源。在A塔转入吸附的同时,由于B塔的进气阀口关闭,排气阀口开启,B塔即转入再生状态。首先,将塔内的压缩空气排空。然后,由A塔出来的干燥空气经再生气路进入B塔,对干燥剂进行脱附,并经排气口Bp排大气。当空气压缩机停止工作时,电控器亦停止对两电空阀供电,使Ad、Bd均处于失电状态。排气阀口Ap、Bp及止回阀口AC、BC均关闭。干燥器的吸附和再生作用都停止。同时,电控器将工作时间记

26、存下来,进气阀将其状态保持下来。当干燥器再次工作时,仍将按原状态和在原时间的基础上继续工作。直到下一个转换周期。干燥器的这一工作特性,称之为“时间累计”和“状态记忆”功能。如果干燥器设置在两总风缸之间,则当空气压缩机停机后,由于进气阀的连锁作用,总有一干燥塔的进气阀口处于开启状态。故第一总风缸的湿空气,仍可通过吸附状态的干燥塔源源补入第二总风缸。但电控器因控制电源无电,干燥器亦无再生和转换作用。所以,本干燥装置无论装于总风缸前或两总风缸之间,均可工作。且在停机时,均无再生空气消耗,总风缸的压力亦不会因此而下降。5.1.2.5 辅助装置与附件5.1.2.5.1 JKF1型高效油水分离器该油水分离

27、器是与JKG1型空气干燥器配套使用的辅助装置,装在进入干燥器前的主管上,用于清除压缩空气中的液态(油、水)粒子,以减轻干燥剂的吸附负荷与油粒子的对干燥剂的污染。油水分离器的结构如图5-17所示。5-17 JKF1型油水分离器1口形密封圈;2挡圈;3滤芯筒;4滤芯组成;5芯轴组成;6下挡板;7轴套;8上盖组成;9上挡板;10筒体组成。滤芯(4)是由一种特制的高效滤网卷制而成。当压缩空气以一定的流速通过滤芯时,其中的液态粒子与网丝表面撞击而被粘附。当积累到一定数量时,可形成液滴滴落到筒体底部,或可用气流反吹将其清除。高效滤网是由不锈钢丝编织而成,须定期进行清洗,可反复使用。5.1.2.5.2 DP

28、W型电磁排污阀该排污阀是与JKF1型高效油水分离器配合使用的辅助装置,设置在油水分离器的排污管路上。用以自动排除油水分离器中积集的油、水和污物。电磁排污阀的结构如图5-18所示,它由DKF2型电空阀和排污阀组合而成。电空阀为控制机构,排污阀为执行机构。排污阀的工作与机车空气压缩机的工作密切配合。当空气压缩机工作时,排污阀为关闭状态。当空气压缩停止工作时,则为开启状态。因此,电空阀的控制电源,必须纳入机车风泵的电控系统中,才能与空气压缩机同步工作。一般接在空气压缩机的起动接触器或中间继电器“常闭”辅助触头上。排污阀的结构和工作原理与排气阀基本相同,可参见前面的说明。图5-18 DPW型电磁排污阀

29、1安装座;2弹簧;3鞲鞴;4O形圈383.1;5O形圈303.1;6防尘圈;7螺杆;8O形圈 152.4;9阀垫;10O形圈453.1;11排污管座;12防松螺母M8;13垫圈;14阀座;15阀; 16排污阀体组成;17排污电空阀。5.1.2.5.3 排气消音器该器件是JKG1型空气干燥器的附件,与干燥器上的排气阀配套使用,以降低干燥塔再生排气的噪音。消音器的结构见图5-19。图5-19 消音器1外壳;2填料;3穿孔板;4挡圈。消音器通过专用接头直接安装在排气阀的排气口上,可以竖装或横装,横装时应注意排气方向,不要影响乘检人员的工作。5.1.3 JZ-7自动制动阀JZ-7自动制动阀是一种自动保

30、压式的制动装置。该阀安装在管座上,该阀控制制动管压力变化,通过司机操纵其手柄,实现制动机的各种性能与作用。5.1.3.1 自动制动阀的组成自动制动阀主要由阀体、管座、手柄、凸轮、调整阀、放风阀、重联柱塞阀、缓解柱塞阀等组成, 见图5-20。图5-20 自动制动阀1调整手轮;2调整阀盖;3调整弹簧;4调整阀膜板鞲鞴;5排气阀;6供气阀;7调整阀柱塞; 8阀上盖;9手柄;10调整阀凸轮;11手柄轴;12放风阀凸轮;13重联柱塞阀凸轮;14客、货车转换手柄;15缓解柱塞阀凸轮;16客、货车转换阀;17管座;18阀体;19缓解柱塞阀;20前盖; 21重联柱塞阀;22放风阀。管号: 1均衡风缸管;2制动

31、管;3总风管;4中均管(中继阀均衡风缸管);6撒砂管;7过充管; 8总风遮断阀管;10单独缓解管;11单独作用管。5.1.3.2 自动制动阀的作用位置自动制动阀有7个作用位置。司机操纵制动阀手柄从左至右依次为: 1过充位;2运转位;3最小减压位;4最大减压位;5过量减压位;6手柄取出位;7紧急制动位。5.1.3.2.1 过充位使制动管得到比规定的压力高3040kPa的过充压力,以加快制动管的充气速度。5.1.3.2.2 运转位也称缓解位,是当列车运行或列车制动后需缓解时所置放的位置,使制动管充气到规定压力,机车与车辆制动机缓解。5.1.3.2.3 制动区制动区是对运行中的列车施行常用制动或调节

32、运行速度所用的位置,其最小减压量是使制动管内空气压力降低4060kPa;最大减压量是使制动管空气压力降低140160kPa。5.1.3.2.4 过量减压位过量减压位用于频繁制动缓解,使制动管的空气压力降低240260kPa。5.1.3.2.5 手柄取出位手柄取出位是本务机车非操纵端;无火回送机车所用位置,使自动制动阀失去对列车制动机的控制。5.1.3.2.6紧急制动位此位置制动管空气压力降至零,使机车与列车迅速制动而且制动力强。5.1.4 单独制动阀单独制动阀仅能操纵机车的制动和缓解而与列车无关。有单独缓解位、运转位和全制动位三个作用位置。单独制动阀的运转位至全制动位为制动区,用自动制动阀制动

33、列车后,可单独缓解机车,松开手柄,可自动由缓解位回到运转位。手柄从左至右,机车阶段制动,手柄从右至左,则阶段缓解。5.1.4.1 单独制动阀的结构单独制动阀与自动制动阀通过螺柱连接在一起。它主要由手柄、调整阀、单缓柱塞阀、定位柱塞等组成(见图5-21结构原理图)。单独制动阀接有3根管子,通过自动制动阀阀体分别接3总风管,10单独缓解管,11单独作用管。5.1.4.2 单独制动阀的作用位置5.1.4.2.1 单独缓解位单独缓解位是自动制动阀施行列车制动后单独缓解机车所用的位置。5.1.4.2.2 运转位运转位是单机制动后缓解或机车在运行状态时所用的位置。5.1.4.2.3 制动区制动区是单机运行

34、时,使机车正常制动所用的位置,单独制动阀在全制动位时,制动缸压力为300kPa,此压力是通过单独制动阀的调整手轮调定的。图5-21 单独制动阀1调整手轮;2调整阀盖;3调整阀弹簧;4排气阀弹簧;5调整阀膜板;6调整阀座; 7排气阀;8供气阀;9调整阀柱塞;10供气阀弹簧;11单缓柱塞阀;12定位柱塞; 13调整阀凸轮;14手柄;15凸轮盒。5.1.5 中继阀中继阀是接受自动制动阀的控制,直接操纵制动管压力变化的装置,既能向制动管充气增压,又能排气减压,还可保持制动管压力不变,从而使得全列车得到充气缓解,制动和保压的作用。5.1.5.1中继阀的结构中继阀由双阀口式中继阀、总风遮断阀和管座三部分组

35、成(见图5-22)。双阀口式中继阀用于制动管的充气和排气,总风遮断阀接受自动制动阀的客、货车转换阀的控制,用来接通或切断总风经双阀口式中继阀通往制动管的通路。管座为双阀口式中继阀和总风遮断阀的安装座,管座上设有五根管子的连接孔,即制动管2、总风管3、中均管4、过充管7、总风遮断阀管8。5.1.5.2 双阀口式中继阀的作用位置5.1.5.2.1 缓解充气位当自动制动阀手柄置运转位时,总风管3向制动管2充风至定压,当司机将手柄置于过充位时,能使制动管得到比规定的压力高3040kPa的压力,加快制动管的充气速度,自动制动阀手柄回到运转位时,制动管2的过充压力缓慢消除,不会引起机车车辆的自然制动。5.

36、1.5.2.2 缓解后保压位制动管缓解后可以自动保压,若制动管漏泄,总风再向制动管补充压力空气。5.1.5.2.3 制动位当手柄移至制动区时,制动管的风经排气口排向大气,使列车制动。5.1.5.2.4 制动后保压位当制动管排气到一定值时,排气阀在自动制动阀控制下关闭,呈制动保压状态,若自动制动阀再减压,制动管继续排气制动,再重新恢复至保压状态。图5-22 中继阀1供气阀弹簧;2供气阀;3顶杆;4排气阀;5排气口;6排气阀弹簧;7 膜板;8主鞲鞴;9中继阀盖;10过充柱塞;11过充盖;12总风遮断阀盖;13弹簧;14遮断阀;15遮断阀体;16管座;17中继阀体;18缩口风堵。5.1.6 分配阀F

37、-7型分配阀根据制动管压力变化而产生动作,直接控制空气继动阀的充气和排气,以实现机车的制动、保压或缓解。F-7型分配阀采用二压力机构与三压力机构相结合的混合机构。它既能阶段缓解,又能一次缓解。分配阀外形如图5-23所示。图5-23 分配阀5.1.6.1 F-7型分配阀的结构F-7型分配阀由主阀部、副阀部和紧急部三部分组成。用一个管座将此三部分连成一体。见图5-24。 5.1.6.2 主阀部的组成及作用主阀部主要由主阀、常用限压阀、紧急限压阀、工作风缸充气止回阀等组成。5.1.6.2.1 主阀 主阀用于机车的制动、缓解与保压。主要由大膜板鞲鞴、小膜板鞲鞴、空心阀杆、供气阀及其弹簧等组成。见图5-

38、25。主阀是三压力机构,即主阀的动作受制动管的压力、作用风缸压力、工作风缸压力三个压力差的控制。大、小膜板鞲鞴的有效面积比为2.7比1 ,分配阀主阀有三个作用位置,缓解位、制动位和保压位。当制动管2增加一定压力时,大膜板向下移动,使作用风缸的压力空气排向大气,使机车缓解。当制动管2压力降低时,大膜板向上移动,使总风3向作用风缸充气,使机车起制动作用。当制动管减压一定时,主阀具有制动后的保压状态。图5-24 分配阀1紧急限压阀;2常用限压阀;3工作风缸充气止回阀;4主阀;5紧急放风阀;6管座;7转换盖板;8一次缓解逆流止回阀;9局减止回阀;10副阀;11保持阀;12充气阀。图5-25 分配阀主阀

39、1供气阀弹簧;2供气阀;3供气阀座;4空心阀杆;5缓解弹簧;6小膜板鞲鞴;7大膜板鞲鞴;8平衡阀盖;9主阀体;10中间盖;11顶杆;12下盖;13限制堵。5.1.6.2.2 常用限压阀常用限压阀用于当制动管定压为500kPa时,将常用制动时的机车制动缸压力限制在340360 kPa,当制动管定压为600kPa时,将常用全制动时的机车制动缸压力限制在420450kPa之间。5.1.6.2.3 紧急限压阀紧急限压阀用于列车在发生紧急制动时,使作用风缸的压力空气限制在420450kPa,同时,在紧急制动后缓解时为作用风缸的压力空气排向大气提供一条道路。5.1.6.2.4 工作风缸充气止回阀工作风缸充

40、气止回阀用于缓解充气时,制动管的压力空气经此阀向工作风缸充气,而在制动减压时,防止工作风缸的压力空气向制动管逆流,以避免产生不制动或制动管减压量与制动缸空气压力不成比例的紊乱现象。5.1.6.3 副阀部的组成及作用 副阀部由副阀、充气阀、保持阀、局减止回阀、一次缓解逆流止回阀、转换盖板等部件组成。其作用如下:(1) 通过副阀部将工作风缸与降压风缸的过充压力回流到制动管,消除过充压力。(2) 加快主阀缓解作用,在直接缓解中,利用副阀部将主阀大膜板上下两侧沟通而构成直接缓解型,而在阶段缓解中,副阀部将工作风缸的压力空气分一部分到降压风缸去,从而使机车加快缓解。(3) 使制动管起局部减压作用。为使制

41、动管加速减压,副阀部能在制动管施行小减压量时使其起局部减压作用,使机车后部车辆制动机起制动作用。(4) 局减止回阀用于再制动时防止局减室的压力空气向制动管逆流,以避免引起副阀的自然缓解。(5) 转换盖板主要用来沟通或切断工作风缸向制动管逆流的通路,在一次缓解位时,除了能加快主阀的缓解外,还能使工作风缸和降压风缸的过充压力经转换盖板逆流到制动管而消除。在阶段缓解时,工作风缸和降压风缸的过充压力只能经充气阀逆流到制动管。5.1.6.4 紧急部的作用紧急部即紧急放风阀,它用于当机车或列车施行紧急制动时,将制动管的压力空气通过放风阀迅速排向大气,以达到紧急制动的目的。紧急放风阀根据制动管的压力变化共有

42、三个作用位置,即充气缓解位、常用制动位和紧急制动位。5.1.7 空气继动阀(作用阀)空气继动阀是接受分配阀或单独制动阀的控制,从而用来控制机车制动缸的充气或排气,使机车实现制动、保压、缓解作用。图5-26为空气继动阀外形图。5.1.7.1 空气继动阀的构成空气继动阀由供气阀、空心阀杆、作用鞲鞴、膜板、缓解弹簧、阀体、管座等组成,见图5-27。管座接有3根管子,3-总风管、12-制动缸管、14-作用管。空气继动阀作用鞲鞴的下方通作用风缸,制动缸的空气压力通过缩孔作用在作用鞲鞴的上侧。图5-26 空气继动阀外形图图5-27 空气继动阀1上堵;2上盖;3供气阀;4空心阀杆;5阀体;6排气弯头;7缓解

43、弹簧;8作用鞲鞴;9下盖;10管座。5.1.7.2 空气继动阀的作用位置空气继动阀,它共有三个作用位置,即缓解位、制动位、保压位。(1) 缓解位时,空心阀杆下移离开供气阀,使制动缸空气排向大气。(2) 当制动位时,作用管14充入一定压力空气,使鞲鞴连同空心阀杆向上移动,使总风3经供气阀口向制动缸充气。(3) 当制动缸空气压力与作用管14相平衡时,此时处于保压状态。假若由于制动缸或管路略有漏泄,作用鞲鞴上侧压力就会降低,致使鞲鞴上下侧压力失去平衡而上移,供气阀口重新开启,总风再向制动缸补充压力空气,直至鞲鞴上下侧压力达到平衡时,鞲鞴和空心阀杆下移,空气继动阀又重新恢复保压位。5.1.8 电空制动

44、装置JZ7型机车电空制动装置输出为五线制,分别为制动导线,缓解导线、保压导线、紧急制动导线和电源负线。5.1.8.1 JZ7型电空制动装置作用原理简要说明JZ7型机车电空制动系统在司机操纵时,手柄的掌握和操纵方法与JZ7型型空气制动机一样,但当司机在操纵前首先要确认JZ7制动机自动制动阀中的客货车转换阀必须置于客车位(保证具有阶段缓解性能),然后把电空制动的电源打开,此时操纵台上的电源指示灯亮,表明JZ7电空制动系统可以正常工作。在换端操纵时首先要把电空制动的电源关闭,然后把自动制动阀手柄逐渐推向手柄取出位,取出自动制动阀和单独制动阀手柄到机车的另一端,把手柄安放在自动制动阀和单独制动阀上,把

45、自动制动阀手柄移置运转位,再把电空电源打开,JZ7型电空制动系统可以正常工作。JZ7型电空制动装置各位置的作用原理如下:5.1.8.1.1 运转位司机首先确认客货车转换阀置于客车位、电源开关接通,操纵台上电源指示灯设亮。由于自动制动阀手柄置于运转位,均衡风缸充气同时时入空电转换控制器的均衡风缸侧,而空电转换控制器的另一侧即制动管侧此时压力低于均衡风缸,此压力差推动膜板移动,触动微动开关,从而使电空制动控制箱内的缓解继电器得电,使车辆上的缓解电磁阀也得电,使车辆制动机缓解,由于手柄在运转位均衡风缸充气使中继阀动作,因而制动管得垤充气,同时使空电转换控制器的制动管侧也得到充气,当制动管压力充到与均

46、衡风缸平衡时,中继阀处于保压状态,停止了向制动管的充气,因而空电转换控制器制动管侧也停止充气,使空电转换控制器处于保压状态,此时空电转换控制器膜板移动到中立位,使微动开关恢复,从而使电空制动控制箱内的缓解继电器失电,并通过控制电路使保压继电器得电,当制动管压力达到接近定压时(控制在58010kPa)由于制动管压力控制器5PS的作用,使保压继电器得电,使自动制动阀手柄在运转位正常运行时,所有的车辆电磁阀均不带电。在运转位充气时,司机操台上缓解批示灯亮,当均衡风缸压力和制动管压力平衡时,保压指示灯亮、缓解指示灯熄灭,当制动管充到接过定压(58010kPa)时,保压指示灯熄灭,机车处于正常的运行状态

47、。5.1.8.1.2 制动区当司机将自动制动阀手柄置于制动区,均衡风缸减压,空电转换控制器均衡风缸侧压力减少,使其膜板两侧形成压力差而使膜板产生与缓解时相反的位移,触动微动开关,使电空制动控制箱内的制动继电器得电,通过制动导线使车辆的制动电磁阀得电,使全部车辆发生制动使用,同时机车本身由于均衡风缸减压使中继阀排出制动管的空气,同时又因制动继电器得电,使机车上的6DF电磁阀和5DF电磁阀得电,6DF电磁阀得电是协助中继阀把制动管的风排向大气,而5DF电磁阀得电是为了使制动管压力快速达到平衡,提高空电转换控制器灵敏度,待制动管压力减到与均衡风缸压力相平衡时,空电转换控制器膜板移到保压位,使保压继电

48、器失电,经保压导线使车辆上的保压电磁阀得电,机车的制动后的保压是依靠原JZ7分配阀的原有性能来实现的。如果司机将自动制动阀手柄由最小减压位逐渐移置最大减压位,空电转换控制器也重复由制动位到保压位从而形成了阶段制动。如果司机把自动制动阀手柄由最大减压位逐渐向最小减压位移动,而空电转换控制器将重复由缓解位转到保压位,从而形成车辆的阶段缓解,而从机车本身来讲它不带保压电磁阀和缓解电磁阀,因此它本身的阶段缓解也是依靠原有F7分配阀的性能来达到的。在司机操纵台上,当列车处于正常运行状态下除了电源指示灯亮以外,有关的电空指示均熄灭,当司机把自动制动阀手柄从运转位移到制动位时,制动指示灯亮,制动后保压时,制

49、动指示灯灭,保压指示灯亮,自动制动阀手柄自最小减压位移到最大减压位,制动指示灯和保压指示灯也重复点亮或熄灭。同理自动制动阀手柄由最大减压位逐渐移至最小减压,操纵台上的保压指示灯和缓解指示灯重复点亮或熄灭。5.1.8.1.3 过量减压位:它的作用过程与制动区完全相同。5.1.8.1.4 手柄取出位当机车在换端操纵时司机要在换端操纵取出手柄之前,必须先把电空电源关闭,随后把自动制动阀手柄由运转位移动至手柄取出位,把自动制动阀和单独制动阀手柄取出到机车的另一端,把手柄放在自动制动阀和单独制动阀上,把单独制动阀手柄放在制动位,再把自动制动阀手柄置于运转位,待制动管充风至定压后,再把这一端的电空电源打开

50、。5.1.8.1.5 紧急制动位当司机将自动制动阀手柄置于紧急制动位时,由于均衡风缸减压使空电转换控制器与常用制动时一样处于制动状态,触动微动开关,使制动继电器得电,经制动导线使车辆上的制动电磁阀得电,同时由于自动制动阀手柄在紧急制动位时,总风3号管内的总风进入6号撒沙管,同时也进入了紧急压力控制器6PS使紧急继电器得电,经紧急导线传至车辆上的紧急电磁阀,产生紧急制动作用。此时在操纵台上制动批示灯和紧急制动批示灯同时点亮。5.1.8.1.6 低压过充位当司机将自动制动阀手柄置于低压过充位,由于均衡风缸定压为600kPa,而制动管由于过充可达640kPa。这就会引起空电转换控制器的膜板移动,触动

51、微动开关使制动继电器得电,但由于安装了过充压力控制器7PS,切断了继电器导向制动导线的电源,而不能引起制动作用。5.1.8.1.7 列车断钩、列车上拉车长阀或机车拉紧急制动阀当列车在运行中发生上述三种的任何一种情况时,机车电空制动控制箱根据制动管的减压发出110V直流的电讯号,使全列车产生电空紧急制动作用,同时也切断自动制动阀在运转位时的充风,使制动管压力迅速排零。达到全列车迅速停车的目的。注意:当列车停车后要发车时,司机必须把自动制动阀手柄移至制动区,待操纵台上的制动灯灭后,再移至运转位,这就可恢复列车充气。缓解全列车的紧急制动作用。5.1.8.2 JZ7型电空制动控制箱调试检验方法准备:将

52、装配完好的控制箱,安装于校验台座上,将校验台上的插头11CZ、12CZ、13CZ、14CZ与控制箱的连接插座一一对应连接好,将所有功能开关置“断开”位,然后接通电源。5.1.8.2.1 一位端(1) 将一位电空电源开关置“开”位,校验台上一位电源指示灯和控制箱一位电源指示灯应亮;保压指示灯也同时亮;校验台电压表和控制箱电压表应有相同指示(110V5)V;电流表也应有相同指示(1.8A左右)。(2) 一位电空开关置“通”位,开关(1HK)置制动位,制动指示灯和电磁阀5DF及6DF的指示灯同时亮,将此开关重复接通三次,观察指示灯显示是否正常。显示正确,将开关5PS、7PS置“通”位。此时除电源指示

53、灯亮外,其他功能指示灯均熄灭。(3) 将开关(1HK)置“缓解”位,缓解指示灯应与5DF的指示灯同时亮,此开关反复进行三次观察是否正常,然后将开关P8置“通”位,缓解指示灯应熄灭,保压灯亮。(4) 将一位电空开关下方置“通”位,开关5PS置“通”位,保压指示灯熄灭;然后将开关P9置“通”位,待90秒后,将开关5PS置下方“通”位,保压批示灯与7DF和8DF的指示灯同时亮。(5) 将所有功能开关置“断”位(电源开关除外),将开关6PS置“通”位,制动指示灯和紧急指示灯同时亮。(6) 将开关5PS置“断”位,然后将“超速控制”开关置“通”位,电磁阀7DF和电磁阀8DF的指示灯同时亮。(7) 上述工

54、作完成后,将一位端电源开关置“断”位,其他功能开关也置“断”开位;5.1.8.2.1 二位端将二位电源开关置“开”位,调试顺序与一位端相同。5.1.8.3 空电转换控制器调试验检验方法5.1.8.3.1 简介空电转换控制器是专门为电空制动系统开发的新型产品,它由两个传感器和两个微动开关组成,可分别对来自两个方向的压差进行开关控制,动作可靠,互不干扰。5.1.8.3.2 调试方法将空电转换控制器安装在微压校验器上设定。如果想要对制动开关设定点(设定值B)进行调整,则应将开关控制器的制动管接头与微压校验器的接口连接。反之,对缓解开关设定点(设定值A)进行调整。则应将开关控制器的均衡管接头与微压校验

55、器的接口连接。然后将指示灯插头插在压力控制器的插座上,此时,两个绿色指示灯亮。然后按以下步骤重新设定。(a) 旋下调节螺钉保护盖,松开M4调节锁紧螺钉。(b) 将微压校验器的压力保持在新的设定点上。(c) 将一小螺丝刀插入调节螺钉。顺时针或逆时针转动调节螺钉,直至相应的红绿灯转换(对设定值A来说:调节螺钉顺时针转动,设定值增大,逆时针转动,设定值减小。对设定值B来说,调节螺钉顺时针转动,设定值减小,逆时针转动,设定值增大)。(d) 将微压校验器的压力较慢地下降至零。重新缓慢地将压力上升或下降。此时红绿灯指示应该在新设定点迅速转换。(e) 如果设定点没有达到要求,则可以将调节螺钉向顺时针或逆时针方向微微地转动一点。再使压力缓慢地上升或下降,观察设定点是否符合要求。如果达不到要求,可重复本条操作,直至达到要求。(f) 设定点达到要求后,可将M4调节锁紧螺

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论