2021数学圆锥曲线知识点提纲_第1页
2021数学圆锥曲线知识点提纲_第2页
2021数学圆锥曲线知识点提纲_第3页
2021数学圆锥曲线知识点提纲_第4页
2021数学圆锥曲线知识点提纲_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、20212021 数学圆锥曲线知识点提纲数学圆锥曲线知识点提纲数学想要得高分,就要把大部分的精力放在基础知识和解题的基本技能上面,因为在数学的考试中,基础题占了试卷的大部分,所以基础知识一定要记牢固。下面是小编整理的数学圆锥曲线知识点提纲,仅供参考,希望能够帮助到大家。 数学圆锥曲线知识点提纲 (一)曲线与方程 首先第一个问题,我们想到的就是曲线与方程的这部分内容了。 在学习圆锥曲线这部分内容之前,我们最早接触到的就是曲线与方程这部分内容。在这部分呢,我们要注意到的是几种常见求轨迹方程的方法。在这里呢,简单的说一下,一共有四种方法:1。直接法由题设所给(或通过分析图形的几何性质而得出)的动点所

2、满足的几何条件列出等式,再用坐标代替这等式,化简得曲线的方程,这种方法叫直接法。 2。定义法 利用所学过的圆的定义、椭圆的定义、双曲线的定义、抛物线的定义直接写出所求的动点的轨迹方程,这种方法叫做定义法。这种方法要求题设中有定点与定直线及两定点距离之和或差为定值的条件,或利用平面几何知识分析得出这些条件。 3。相关点法 若动点 P(x,y)随已知曲线上的.点 Q(x0,y0)的变动而变动,且 x0、y0 可用 x、y 表示,则将 Q 点坐标表达式代入已知曲线方程,即得点 P 的轨迹方程。这种方法称为相关点法(或代换法)。 4。待定系数法 求圆、椭圆、双曲线以及抛物线的方程常用待定系数法求 (二

3、)椭圆,双曲线,抛物线 这部分就可以研究第二个问题了呢。在椭圆,双曲线以及抛物线里,最最重要的就是他们的标准方程,因为我们可以从它们的标准方程中看到许多东西,包括顶点,焦点,图形的画法等等等等,所以这个呢是要求我们必须要会的。 在一般做题的时候,我们要首先要根据题意来画图,这点特别重要,我们要清楚题目要我们求什么才能继续做下去不是。接下来就是根据题意来写过程了,我们的一般步骤呢都是建系,设点,联立方程,化简,判断,韦达定理,列关系式,整理,作答。在考试中,我们按照步骤一步一步的写,写到韦达定理至少 8 分有了。当然了,各圆锥曲线的几何性质也尤其重要,包括离心率,顶点,对称性,范围,以及焦点弦,

4、准线,渐近线等等。这些性质大家也要熟练掌握并且会应用。在这部分呢,还有很多很多的专题,譬如弦长问题,那大家还记得弦长公式吗?中点弦问题,我们通常会用到点差法,那么何为点差法呢?就是把两点坐标代入曲线方程作差后得到直线的斜率和弦中点坐标之间的关系式,这种方法。还有一类问题就是直线与圆锥曲线的位置关系。分为三大类:有直线与椭圆的位置关系,就是看;直线与双曲线的位置关系,先看联立之后的方程中的 a,如果 a=0 方程有一解,直线与双曲线有一个公共点(直线与渐近线平行),a0 的时候,还是看啦;而直线与抛物线与直线与双曲线的位置关系是类似的,当 a=0直线与抛物线有一个公共点(直线与抛物线的轴平行或重

5、合),a0 的时候,还是看。 学习数学的方法 背诵概念和公式 有很多同学对概念的理解只是停留在文字表面,对概念的特殊情况重视不够。背诵不是对概念和公式一味的死记硬背,要与实际题目的联系。这样就才能很好的将学到的知识点与解题联系起来。 多看例题 在学习数学的过程中,一定要多看例题,细心的同学会发现,老师在讲解基础内容之后,总是给我们补充一些课外例题或者习题,我们学的概念、定理,一般较抽象,要把它们具体化,就需要把它们运用在题目中,我们可以在看例题的过程中,将头脑中已有的概念具体化,使对知识的理解更深刻,更透彻。 及时纠错 课堂练习、作业、检测,反馈后要及时查阅,分析错题的原因,必要时强化相关计算

6、的训练。不明白的问题要及时向同学和老师请教了,不能将问题处于悬而未解的状态,养成今日事今日毕的好习惯。 学好数学的方法 1、做好预习: 单元预习时粗读,了解近阶段的学习内容,课时预习时细读,注重知识的形成过程,对难以理解的概念、公式和法则等要做好记录,以便带着问题听课。 2、认真听课: 听课应包括听、思、记三个方面。听,听知识形成的来龙去脉,听重点和难点,听例题的解法和要求。思,一是要善于联想、类比和归纳,二是要敢于质疑,提出问题。记,指课堂笔记记方法,记疑点,记要求,记注意点。 3、认真解题: 课堂练习是最及时最直接的反馈,一定不能错过。不要急于完成作业,要先看看你的笔记本,回顾学习内容,加深理解,强化记忆。 4

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论