非参数统计讲义一PowerPoint 演示文稿_第1页
非参数统计讲义一PowerPoint 演示文稿_第2页
非参数统计讲义一PowerPoint 演示文稿_第3页
非参数统计讲义一PowerPoint 演示文稿_第4页
非参数统计讲义一PowerPoint 演示文稿_第5页
已阅读5页,还剩81页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、12 本课程的目的是使学生认识到非参数统计方法是本课程的目的是使学生认识到非参数统计方法是统计中最常用的推断方法之一,理解非参数统计统计中最常用的推断方法之一,理解非参数统计方法和参数统计方法的区别,理解非参数统计的方法和参数统计方法的区别,理解非参数统计的基本概念,掌握非参数统计的基本理论和计算,基本概念,掌握非参数统计的基本理论和计算,能应用统计软件和非参数统计方法分析解决实际能应用统计软件和非参数统计方法分析解决实际问题。问题。3统计是分析数据信息的科学统计是分析数据信息的科学这个定义决定了统计的命运:这个定义决定了统计的命运: 和数学不同和数学不同, 统计不能欣赏自己统计不能欣赏自己,

2、 它不为实际服务它不为实际服务就就没有存在必要没有存在必要 统计必须统计必须为各个领域服务为各个领域服务 统计必须和统计必须和数据数据打交道打交道 因此因此,统计必须和统计必须和计算机计算机结合结合4学生请假与星期几有关吗?学生请假与星期几有关吗?股票涨跌与星期几有关吗?股票涨跌与星期几有关吗?夫妻的审美观有差异吗?夫妻的审美观有差异吗?广告的播出时间与电脑销量有关吗?广告的播出时间与电脑销量有关吗?婴儿出生数白天与晚上有明显差异吗婴儿出生数白天与晚上有明显差异吗5 用实例说明非参数统计方法和参数统用实例说明非参数统计方法和参数统计方法的区别,使学生认识到学习非参数计方法的区别,使学生认识到学

3、习非参数统计方法的必要性。统计方法的必要性。6经典统计的多数检验都假定了总体的背景分布。经典统计的多数检验都假定了总体的背景分布。分布由参数决定的,期望与方差分布由参数决定的,期望与方差总体的分布形式或分布族往往是给定的或者是总体的分布形式或分布族往往是给定的或者是假定了的,所不知道的仅仅是一些参数得知或假定了的,所不知道的仅仅是一些参数得知或它们的范围。人们的主要任务就是对一些参数,它们的范围。人们的主要任务就是对一些参数,比如均值和方差(或标准差)进行估计或检验。比如均值和方差(或标准差)进行估计或检验。 7非参数统计方法(非参数统计方法(Nonparametric Statistical

4、 method)对对总体的概率分布假定以及测量尺度的要求即使总体的概率分布假定以及测量尺度的要求即使 有也很有也很少的统计方法。当能够得到分类数据和顺序数据时可少的统计方法。当能够得到分类数据和顺序数据时可以使用的方法。以使用的方法。也称为无分布方法(也称为无分布方法(Distribution-free Statistics methods),也也称自由分布统计学。表示无需对总体概率分布做出假称自由分布统计学。表示无需对总体概率分布做出假定。定。因常因常 按大小或出现先后次序排列资料进行分析,按大小或出现先后次序排列资料进行分析,故又称次序统计学(故又称次序统计学(Order Statisti

5、cs)8什么是非参数检验?什么是非参数检验? 不假定了总体的具体背景分布形式。 这些检验多根据数据观测值的相对大小建立检验统计量,然后找到在零假设下这些统计量的分布。 看这些统计量的数据实现是否在零假设下属于小概率事件。这种和数据本身的总体分布无关的检验称为非参数检验。9非参数检验有什么优越性?非参数检验有什么优越性? 在总体分布未知时,如果还假定总体有诸如正态分布那样的已知分布,在进行统计推断就可能产生错误甚至灾难。 非参数检验总是比传统检验安全。但是在总体分布形式已知时,非参数检验就不如传统方法效率高。 但非参数统计在总体分布未知时效率要比假定了错误总体分布时的传统方法要高,有时要高很多。

6、10哪个好?11 选择飞机与选择用参数与非参数方法的思路相同。 大型飞机很好,但对机场的要求很高。参数统计对数据要求很高。 小型飞机不一定舒适,但起降时对机场的要求很低。同理非参数统计对数据要求较低。12统计方法的选择统计方法的选择:用参数统计方法与非参数统:用参数统计方法与非参数统计方法计方法1、考虑对总体的假定。对总体有假定时用参数,、考虑对总体的假定。对总体有假定时用参数,已具备使用参数统计方法时一般不用非参数统已具备使用参数统计方法时一般不用非参数统计。计。2、数据的度量尺度。定距与定比可以用参数。、数据的度量尺度。定距与定比可以用参数。非参数统计方法的应用条件非参数统计方法的应用条件

7、:1、用于分析定类数据、用于分析定类数据2、用于分析定序数据、用于分析定序数据3、用于分析定距、定比数据时总体分布未做假定。、用于分析定距、定比数据时总体分布未做假定。13参数统计(参数统计(Parametric Statistical method)有两有两个特点:个特点:1、以推断某特定参数为对象。如总体均值、以推断某特定参数为对象。如总体均值,总体比例总体比例P,总体方差,两个总体殚值,总体方差,两个总体殚值 的差等。的差等。2、常需要假定总体的分布是已知的,有的要、常需要假定总体的分布是已知的,有的要假设总体是服从正态分布的,才能作出推断。假设总体是服从正态分布的,才能作出推断。14数

8、据的四种尺度:数据的四种尺度:定类、定类、定序、定序、定距、定距、定比定比对定类和定序的只能用非参数统计分析方法对定类和定序的只能用非参数统计分析方法15非参数检验的特点非参数检验的特点1、非参数统计方法应用广泛。、非参数统计方法应用广泛。2、它对资料的要求易于得到满足。、它对资料的要求易于得到满足。3、当总体分布有具体形式未知,而且样本容、当总体分布有具体形式未知,而且样本容量很小时,无法用参数统计方法,只能用非参量很小时,无法用参数统计方法,只能用非参数方法。数方法。4、大多数非参数统计方法简单、直观、易于、大多数非参数统计方法简单、直观、易于掌握和应用。掌握和应用。5、总体分布形式已知时

9、,非参数统计的方法、总体分布形式已知时,非参数统计的方法的检验功效不如假定总体已知的各种参数统计的检验功效不如假定总体已知的各种参数统计方法。方法。166、非参数统计方法所推断的通常不是总体参、非参数统计方法所推断的通常不是总体参数数7、其通常按大小或出现先后顺序排列的资料、其通常按大小或出现先后顺序排列的资料进行分析。进行分析。8、通常以中位数代表分布的中心,以极差代、通常以中位数代表分布的中心,以极差代表离散程度。表离散程度。171819202122非参数统计的主要内容非参数统计的主要内容内容内容非参数检验非参数检验相应的参数检相应的参数检验验2独立样本中位数检验秩和检验独立样本t检验2

10、配对样本/单一样本符号检验Wilcoxon 检验成对样本 t-检验2独立样本Kruskal-Wallis 检验单一因素ANOVA两因素Friedman检验双因素ANOVA相关性检验Spearman秩相关Pearson相关性检验 分布的检验Kolmogorov-Smirnov23Level ofMeasurementNonparametric TestNonparametricCorrelationOne SampleTwo SamplesK SamplesRelatedUnrelatedRelatedUnrelatedNominalBinomial TestChi-Square TestMcN

11、emar Change TestFisher Exact Test for 2x2 TablesChi-Square Test for rx2 TablesCochran Q TestChi-Square Test for rxk TablesCramer CoefficientPhi CoefficientKappa CoefficientAsymmetrical Lambda StatisticOrdinalKolmogorov-Smirnov One- Sample TestOne-Sample Runs TestChange-Point TestSign TestWilcoxon Si

12、gned Ranks TestMedian TestMann-Whitney U TestRobust Rank- Order TestKolmogorov-Smirnov Two- Sample TestSiegel-Tukey Test for Scale DifferencesFriedman Two- Way ANOVA by RanksPage Test for Ordered AlternativesExtension of the Median TestKruskal-Wallis One-Way ANOVAJonckheere Test for Ordered Alternat

13、ivesSpearman Rank-Order CoefficientKendall Rank-Order CoefficientKendall Partial Rank-Order CoefficientKendall Coefficient of ConcordanceKendall Coefficient of AgreementCorrelation Between k Judges and a Criterion TestGamma StatisticSomers Index of Asymmetric Association24非参数统计的历史非参数统计的历史非参数统计的形成主要归

14、功于非参数统计的形成主要归功于20世纪世纪40年代年代50年代化学家年代化学家F.Wilcoxon等人的工作。等人的工作。Wilcoxon于于1945年提出两样本秩和检验,年提出两样本秩和检验,1947年年Mann和和Whitney二人将结果推广到两组样本二人将结果推广到两组样本量不等的一般情况;量不等的一般情况;Pitman于于1948年回答了非参数统计方法相对于年回答了非参数统计方法相对于参数方法来说的相对效率方面的问题;参数方法来说的相对效率方面的问题;2560年代中后期,年代中后期,Cox和和Ferguson最早将非参数最早将非参数方法应用于生存分析。方法应用于生存分析。70年代到年代

15、到80年代,非参数统计借助计算机技术年代,非参数统计借助计算机技术和大量计算获得更稳健的估计和预测,以和大量计算获得更稳健的估计和预测,以P.J.Huber以及以及 F.Hampel为代表的统计学家从为代表的统计学家从计算技术的实现角度,为衡量估计量的稳定性计算技术的实现角度,为衡量估计量的稳定性提出了新准则。提出了新准则。2690年代有关非参数统计的研究和应用主要集中年代有关非参数统计的研究和应用主要集中在非参数回归和非参数密度估计领域,其中较在非参数回归和非参数密度估计领域,其中较有代表性的人物是有代表性的人物是Silverman和和J. Fan。 非参数统计分为广义的和狭义的两种非参数统

16、计分为广义的和狭义的两种狭义的非参数统计主要研究假设检验,本课程狭义的非参数统计主要研究假设检验,本课程研究狭义的。研究狭义的。广义的非参数统计只要不考虑总体的分布的统广义的非参数统计只要不考虑总体的分布的统计分析方法计分析方法27但是在总体分布形式已知时,非参数检验但是在总体分布形式已知时,非参数检验就不如传统方法效率高。这是因为非参数就不如传统方法效率高。这是因为非参数方法利用的信息要少些。往往在传统方法方法利用的信息要少些。往往在传统方法可以拒绝零假设的情况,非参数检验无法可以拒绝零假设的情况,非参数检验无法拒绝。拒绝。但非参数统计在总体未知时效率要比传统但非参数统计在总体未知时效率要比

17、传统方法要高,有时要高很多。是否用非参数方法要高,有时要高很多。是否用非参数统计方法,要根据对总体分布的了解程度统计方法,要根据对总体分布的了解程度来确定。来确定。 28 因为非参数统计方法不利用关于总体分因为非参数统计方法不利用关于总体分布的知识,所以,就是在对总体的任何知布的知识,所以,就是在对总体的任何知识都没有的情况下,它也能很容易而又很识都没有的情况下,它也能很容易而又很可靠地获得结论。可靠地获得结论。 这时非参数方法往往优于参数方法,并这时非参数方法往往优于参数方法,并且非参数检验总是比传统检验安全。且非参数检验总是比传统检验安全。293031323334秩(秩(rank)利用秩的

18、大小进行推断就避免利用秩的大小进行推断就避免了不知道背景分布的困难。这也是大多数了不知道背景分布的困难。这也是大多数非参数检验的优点。非参数检验的优点。多数非参数检验明显地或隐含地利用了秩多数非参数检验明显地或隐含地利用了秩的性质;但也有一些非参数方法没有涉及的性质;但也有一些非参数方法没有涉及秩的性质。秩的性质。 35非参数检验中秩是最常使用的概念。什么是非参数检验中秩是最常使用的概念。什么是一个数据的秩呢?一般来说,秩就是该数据一个数据的秩呢?一般来说,秩就是该数据按照升幂排列之后,每个观测值的位置。按照升幂排列之后,每个观测值的位置。 3637秩(秩(rank) 非参数检验中秩是最常使用

19、的概非参数检验中秩是最常使用的概念。什么是一个数据的秩呢?一念。什么是一个数据的秩呢?一般来说,秩就是该数据按照升幂般来说,秩就是该数据按照升幂排列之后,每个观测值的位置。排列之后,每个观测值的位置。例如我们有下面数据例如我们有下面数据Xi159183178513719Ri75918426310这下面一行(记为这下面一行(记为Ri)就是上面一)就是上面一行数据行数据Xi的秩。的秩。 38159183178513719数据输入数据输入SPSS394041例题:某学院本科三年级有例题:某学院本科三年级有9个专业组成,统计个专业组成,统计每个专业学生每月消费数据如下,用每个专业学生每月消费数据如下,

20、用SPSS求消求消费数据的秩和顺序统计量的现值:费数据的秩和顺序统计量的现值: 300 230 208 580 690 200 263 215 520422.有结数据的秩有结数据的秩设样本设样本X1,X2,XN 取自总体取自总体X的简单随的简单随机抽样,将数据排序后机抽样,将数据排序后,相同的数据点组成一相同的数据点组成一个个“结结”,称重复数据的个数为结长。,称重复数据的个数为结长。例例1:3.8 3.2 1.2 1.2 3.4 3.2 3.2解:结长为解:结长为3。43假设检验:假设检验: 假设检验是指我们可以对某一参数的假定值进假设检验是指我们可以对某一参数的假定值进行行先验判断或预期先

21、验判断或预期,然后利用小概率原理对其进行,然后利用小概率原理对其进行检验,得到接受或拒绝原假设的结论。检验,得到接受或拒绝原假设的结论。小概率原理:小概率原理: 我们认为小概率事件由于发生的可能性很小,我们认为小概率事件由于发生的可能性很小,在一次试验中它几乎是不会发生的。如果发生了,在一次试验中它几乎是不会发生的。如果发生了,说明我们的假设有问题,所以我们将拒绝原来的假说明我们的假设有问题,所以我们将拒绝原来的假设。设。4445参数统计的假设检验 如:检验正态分布的均值是否相等检验正态分布的均值是否相等 H0:u1=u2; H1:u1u2 检验均值是否检验均值是否等于零 H0:u=0; H1

22、:u0 46例例85 用自动装袋机装葡萄糖,每袋标准重500克,每隔一定时间需检查机器工作是否正常. 现抽得10袋,测得其重量为(单位:克)495,510,505,498,503,492,502 ,512, 497, 506, 假定重量服从正态分布,问机器是否正常?解解 由于2未知, 所以用T检验法提出假设0100: , 500:HH1(495510506)50210 x 479380)502506()502510()502495(11012222S所以应接受H0,可以认为,机器工作正常. 9733. 0386103/380500502/0nSXT05. 02622. 2)9() 1(025.

23、 02tnt对拒绝域2.2622T P值,由T0.9733,df=9,可得(EXCEL函数=TDIST(0.9733,9,2)0.3558355948假定甲、乙两机床截下的长度方差相等,问长度的期望值是否一样? 例例88从两台切断机所截下的坯料(长度按正态分布)中,分别抽取个和个产品,测得长度如下(单位:mm):甲:150, 145, 152, 155, 148, 151, 152, 148乙:152, 150, 148, 152, 150, 150, 148, 151, 14849设甲床截下的长度为X;乙床截下的长度为Y,由假定知21=22=2012112. .Hvs H检验假设1(150

24、145148)150.125150.18x 9 .149889.149)148150152(91Y822221()(150 150.1)(145 150.1)(148 150.1)66.88iiXX解5091222289.20)9 .149148()9 .149150()9 .149152()(iiYY150.1 149.9(892)0.210800.17021/8 1/987.771766.8820.89T (2)11wXYTt nmSnm2) 1() 1(2221mnSmSnSw5105. 02120.025(2)(15)2.1315tnnt0.1702TW0.H对查表得拒绝域为/ 2|(

25、15)|2.1315WTtT所以应接受52参数方法 定义:样本被视为从分布族的某个参数族抽取出来的定义:样本被视为从分布族的某个参数族抽取出来的总体的代表,而未知的仅仅是总体分布具体的参数值,总体的代表,而未知的仅仅是总体分布具体的参数值,推断问题就转化为对分布族的若干个未知参数的估计推断问题就转化为对分布族的若干个未知参数的估计问题,用样本对这些参数做出估计或者进行某种形式问题,用样本对这些参数做出估计或者进行某种形式的假设检验,这类推断方法称为的假设检验,这类推断方法称为。 比如:比如:(1)研究保险公司的索赔请求数时,可能假定索赔请)研究保险公司的索赔请求数时,可能假定索赔请求数来自泊松

26、分布求数来自泊松分布P(a);(2)研究化肥对农作物产量的影响效果时,平均意义)研究化肥对农作物产量的影响效果时,平均意义之下,每测量单元(可能是)产量服从正态分布之下,每测量单元(可能是)产量服从正态分布N(a,b).53接受域置信区间1假设检验区间估计统计量 枢轴量对偶关系同一函数假设检验与区间估计的联系假设检验与区间估计的联系54假设检验的基本概念若对参数有所了解但有猜测怀疑,需要证实之时用假设检验的方法来 处理若对参数若对参数一无所知一无所知用参数估计用参数估计的方法处理的方法处理55接受域置信区间检验统计量及其在H0为真时的分布枢轴量及其分布原假设 H0备择假设 H1待估参数 0 0

27、( 2未知)) 1(0nTnSXT( 2未知)) 1(0nTnSXT)2nstx20tnsx,(2nstx56一个典型的参数检验过程1. 总体参数总体参数Example: Population Mean2. 假定数据的形态为假定数据的形态为 Whole Numbers or Fractions Example: Height in Inches (72, 60.5, 54.7)3. 有很强的假定有很强的假定Example: 正态分布正态分布4. 例子例子: Z Test, t Test, 2 Test57一个例子一个例子:对两组学生进行语法测试,如何比较两对两组学生进行语法测试,如何比较两组学

28、生的成绩是否存在差异?组学生的成绩是否存在差异?组组1组组2442533302229834472431254013303233243530183221373558G Gr ro ou up p S St ta at ti is st ti ic cs s1529.800010.331642.667621227.91676.273441.81099G1.002.00XNMeanStd. DeviationStd. ErrorMeanI In nd de ep pe en nd de en nt t S Sa am mp pl le es s T Te es st t2.448.130.55425

29、.5851.883333.40057-5.120288.88695.58423.520.5651.883333.22426-4.778418.54508Equal variancesassumedEqual variancesnot assumedXFSig.Levenes Test forEquality of VariancestdfSig. (2-tailed)MeanDifferenceStd. ErrorDifferenceLowerUpper95% ConfidenceInterval of theDifferencet-test for Equality of Means59RA

30、NK of SCORE25.020.015.010.05.00.0HistogramFor GROUP= Group1Frequency6543210Std. Dev = 6.28 Mean = 13.0N = 12.00原始数据原始数据秩秩2530293424251332243032379.514.012.021.07.59.52.017.57.514.017.524.04433228473140303335182135282226.019.55.51.027.016.025.014.019.522.53.04.022.511.05.5RANK of SCORE25.020.015.010.

31、05.00.0HistogramFor GROUP= Group2Frequency6543210Std. Dev = 9.17 Mean = 14.8N = 15.0060RanksRanks1514.80222.001213.00156.0027G1.002.00TotalXNMean RankSum of RanksT Te es st t S St ta at ti is st ti ic cs sb b78.000156.000-.586.558.581aMann-Whitney UWilcoxon WZAsymp. Sig. (2-tailed)Exact Sig. 2*(1-ta

32、iledSig.)XNot corrected for ties.a. Grouping Variable: Gb. 61假设检验的基本思想 = 506201010100:uuHuuHuuHuuHXXXX备择假设零假设单边备择单边备择单边备择单边备择双边备择双边备择零假设零假设 (原假设原假设)与备择假设:与备择假设:例:例:010001000100:uuHuuHuuHuuHuuHuuHxxxxxx备择假设零假设备择假设零假设备择假设零假设63假设检验的方法假设检验的方法1.1.置信区间法置信区间法 置信区间提供了在某一置信度置信区间提供了在某一置信度(例如例如95)下真实参下真实参数值的取值

33、范围。数值的取值范围。 如果零假设中的值未落入该区间,也就是说小概率如果零假设中的值未落入该区间,也就是说小概率事件发生了,我们认为小概率事件由于发生的可能性很事件发生了,我们认为小概率事件由于发生的可能性很小,在一次试验中它几乎是不会发生的。如果发生了,小,在一次试验中它几乎是不会发生的。如果发生了,说明我们的假设有问题,所以我们将拒绝该零假设。说明我们的假设有问题,所以我们将拒绝该零假设。 概念:概念: 接受域(置信区间)接受域(置信区间) 、拒绝域、临界值、拒绝域、临界值 64第一类错误和第二类错误:一个偏离第一类错误和第二类错误:一个偏离 由小概率原理我们可以看出,我们的这种判断是由小

34、概率原理我们可以看出,我们的这种判断是有可能犯错误的。我们把可能犯的错误分为两类:有可能犯错误的。我们把可能犯的错误分为两类:第第一类错误和第二类错误一类错误和第二类错误。 第一类错误:第一类错误:零假设是正确的,却做出拒绝零假零假设是正确的,却做出拒绝零假设的判断,此为设的判断,此为弃真弃真错误。错误。 第二类错误:第二类错误:零假设是错误的,却做出接受零假零假设是错误的,却做出接受零假设的判断,此为设的判断,此为取伪取伪错误。错误。 65假设检验不可能完全避免这两类错误,我们只能假设检验不可能完全避免这两类错误,我们只能想办法使犯错误的想办法使犯错误的概率概率尽量减小。尽量减小。1-置信水

35、平,也称显著性水平置信水平,也称显著性水平犯第一类错误的概率犯第一类错误的概率 =犯弃真错误的概率犯弃真错误的概率犯第二类错误的概率犯第二类错误的概率 =犯取伪错误的概率犯取伪错误的概率66 两类错误两类错误 假设检验存在着接受错误的假设和拒绝正确假设检验存在着接受错误的假设和拒绝正确假设的可能性假设的可能性. 正正 确确拒绝拒绝 H0正正 确确接受接受 H0决决策策行行动动 H0 为非真为非真H0 为真为真假设的真实状态假设的真实状态检验结果检验结果误误错错 误误错错 假设检验的各种可能结果假设检验的各种可能结果1-a1-67陪审团审判陪审团审判裁决裁决实际情况实际情况无罪无罪有罪有罪无罪无

36、罪正确正确错误错误有罪有罪错误错误正确正确H0 检验检验决策决策实际情况实际情况H0为真为真H0为假为假接受接受H01 - 第二类错第二类错误误( ()拒绝拒绝H0第一类错第一类错误误( ()功效功效(1-(1-)68 错误和 错误的关系你不能同时减你不能同时减少两类错误少两类错误!69702.2.显著性检验显著性检验 显著性检验:在给定显著性水平下,为考察样本显著性检验:在给定显著性水平下,为考察样本值的显著性而进行的假设检验。值的显著性而进行的假设检验。 检验是统计显著的:能够拒绝零假设,即观察到检验是统计显著的:能够拒绝零假设,即观察到的样本值落入拒绝域。的样本值落入拒绝域。 检验是统计

37、不显著的:不能够拒绝零假设,即观检验是统计不显著的:不能够拒绝零假设,即观察到的样本值落入接受域。察到的样本值落入接受域。 71 确定确定显著性水平显著性水平 , 求临界值求临界值. 在假设检验中在假设检验中, 认为认为零假设代表的事件概率零假设代表的事件概率很大很大, , 备择假设代表的对立事件概率很小备择假设代表的对立事件概率很小. . 根据根据实际推断原理实际推断原理 (小概率原理小概率原理) , 规定一个规定一个界限界限 , 当某事件的概率当某事件的概率 , 就认就认为该事件是实际不可能事件为该事件是实际不可能事件. )10( p为为称称 显著性水平显著性水平. 001. 0,01. 0,05. 0 通通常常规规定定 如果如果在一次检验中在一次检验中, 备择假设代表的小概率事件居然备择假设代表的小概率事件居然发生了发生了, , 就有理由怀疑零假设的正确性就有理由怀疑零假设的正确性. . 这就是假设检验的基本原理这就是假设检验的基本原理 . 72显著水平显著水平 的选择与的选择与P P值值 P值值(概率值)也称为统计量的精确显著性水平。(概率值)也称为统计量的精确显著性水平。它可定义为它可定义为拒绝零假设的最小的显著性水平拒绝零假设的最小的显著性水平。一般规律:一般规律: P值越小,越能拒

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论