




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第九章 不等式一、基础知识不等式的基本性质:(1)aba-b0; (2)ab, bcac;(3)aba+cb+c; (4)ab, c0acbc;(5)ab, c0acb0, cd0acbd;(7)ab0, nN+anbn; (8)ab0, nN+;(9)a0, |x|a-axaxa或xb0, cd0,所以acbc, bcbd,所以acbd;重复利用性质(6),可得性质(7);再证性质(8),用反证法,若,由性质(7)得,即ab,与ab矛盾,所以假设不成立,所以;由绝对值的意义知(9)成立;-|a|a|a|, -|b|b|b|,所以-(|a|+|b|)a+b|a|+|b|,所以|a+b|a|+|
2、b|;下面再证(10)的左边,因为|a|=|a+b-b|a+b|+|b|,所以|a|-|b|a+b|,所以(10)成立;(11)显然成立;下证(12),因为x+y-20,所以x+y,当且仅当x=y时,等号成立,再证另一不等式,令,因为x3+b3+c3-3abc =(a+b)3+c3-3a2b-3ab2-3abc =(a+b)3+c3-3ab(a+b+c)=(a+b+c)(a+b)2-(a+b)c+c2-3ab(a+b+c)=(a+b+c)(a2+b2+c2-ab-bc-ca)= (a+b+c)(a-b)2+(b-c)2+(c-a)2 0,所以a3+b3+c33abc,即x+y+z,等号当且仅当
3、x=y=z时成立。二、方法与例题1不等式证明的基本方法。(1)比较法,在证明AB或A0)与1比较大小,最后得出结论。例1 设a, b, cR+,试证:对任意实数x, y, z, 有x2+y2+z2例2 若ax(n+1)n.(4)反证法。例6 设实数a0, a1,an满足a0=an=0,且a0-2a1+a20, a1-2a2+a30, an-2-2an-1+an0,求证ak0(k=1, 2, n-1).(5)分类讨论法。例7 已知x, y, zR+,求证:(6)放缩法,即要证AB,可证AC1, C1C2,Cn-1Cn, CnB(nN+).例8 求证:例9 已知a, b, c是ABC的三条边长,m
4、0,求证:(7)引入参变量法。例10 已知x, yR+, l, a, b为待定正数,求f(x, y)=的最小值。例11 设x1x2x3x42, x2+x3+x4x1,求证:(x1+x2+x3+x4)24x1x2x3x4.(8)局部不等式。例12 已知x, y, zR+,且x2+y2+z2=1,求证:例13 已知0a, b, c1,求证:2。(9)利用函数的思想。例14 已知非负实数a, b, c满足ab+bc+ca=1,求f(a, b, c)=的最小值。2几个常用的不等式。(1)柯西不等式:若aiR, biR, i=1, 2, , n,则等号当且仅当存在R,使得对任意i=1, 2, , n,
5、ai=bi, 变式1:若aiR, biR, i=1, 2, , n,则等号成立条件为ai=bi,(i=1, 2, , n)。变式2:设ai, bi同号且不为0(i=1, 2, , n),则等号成立当且仅当b1=b2=bn.(2)平均值不等式:设a1, a2,anR+,记Hn=, Gn=, An=,则HnGnAnQn. 即调和平均几何平均算术平均平方平均。其中等号成立的条件均为a1=a2=an.【证明】 由柯西不等式得AnQn,再由GnAn可得HnGn,以下仅证GnAn. 1)当n=2时,显然成立;2)设n=k时有GkAk,当n=k+1时,记=Gk+1.因为a1+a2+ak+ak+1+(k-1)
6、Gk+12kGk+1, 所以a1+a2+ak+1(k+1)Gk+1,即Ak+1Gk+1.所以由数学归纳法,结论成立。(3)排序不等式:若两组实数a1a2an且b1b2bn,则对于b1, b2, , bn的任意排列,有a1bn+a2bn-1+anb1a1b1+a2b2+anbn.【证明】 引理:记A0=0,Ak=,则 =(阿贝尔求和法)。证法一:因为b1b2bn,所以b1+b2+bk.记sk=-( b1+b2+bk),则sk0(k=1, 2, , n)。所以-(a1b1+a2b2+anbn)= +snan0.最后一个不等式的理由是aj-aj+10(j=1, 2, , n-1, sn=0),所以右
7、侧不等式成立,同理可证左侧不等式。证法二:(调整法)考察,若,则存在。若(jn-1),则将与互换。因为0,所 调整后,和是不减的,接下来若,则继续同样的调整。至多经n-1次调整就可将乱序和调整为顺序和,而且每次调整后和是不减的,这说明右边不等式成立,同理可得左边不等式。例15 已知a1, a2,anR+,求证;a1+a2+an.注:本讲的每种方法、定理都有极广泛的应用,希望读者在解题中再加以总结。三、基础训练题1已知0xm,则m的最小值是_.6“a+b=4”是“不等式|x-a|+|x-b|8的解集是x|-2x6”的_条件.7若a, bR+,则a+b=1,以下结论成立是_. a4+b4;a3+b
8、31;8已知00, b0且ab, m=aabb, n=abba, 则比较大小:m_n.11已知nN+,求证:12已知0ax20, 1a0,记,比较大小:x1x2_y1y2.8已知函数的值域是,则实数a的值为_.9设ab0, P=(a1-a2)(c1-c2), Q=(b1-b2)2,比较大小:P_Q.2 已知x2+y2-xy=1,则|x+y-3|+|x+y+2|=_.3二次函数f(x)=x2+ax+b,记M=max|f(1)|, |f(2)|, |f(3)|,则M的最小值为_.4设实数a, b, c, d满足abcd或者abcd,比较大小:4(a+c+d)(a+b+d)_(2a+3d+c)(2a
9、+2b+c+d).5已知xiR+, i=1, 2, ,n且,则x1x2xn的最小值为_(这里n1).6已知x, yR, f(x, y)=x2+6y2-2xy-14x-6y+72的最小值为_.7已知0ak1(k=1, 2, ,2n),记a2n+1=a1, a2n+2=a2,则的最大值为_.8已知0x1, 0y1, 0z1,则的最大值为_.9已知x5,求证:10对于不全相等的正整数a, b, c,求证:11已知ai0(i=1, 2, , n),且=1。又012n,求证:六、联赛二试水平训练题1设正实数x, y, z满足x+y+z=1,求证:2设整数x1, x2, ,xn与y1, y2, , yn满足1x1x2xny1y2y1+y2+ym,求证:x1x2xny1y2ym.3设f(x)=x2+a,记f(x), fn(x)=f(fn-1(x)(n=2, 3, ),M=aR|对所有正整数n, |fn(0)| 2,求证:。4给定正数和正整数n(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025届安徽省滁州市来安中学高三二诊模拟考试化学试卷含解析
- 工程类成本知识
- 护理责任组长如何管理病人
- 贵州省贵阳市云岩区第十七中学2024-2025学年九年级下学期3月阶段物理试卷(含答案)
- 了解网络安全
- 云南省彝良县民族中学2025届高三第二次调研化学试卷含解析
- 2025年学校防震应急演练工作实施方案
- 黑龙江省绥化市安达七中2025届高三适应性调研考试化学试题含解析
- 广东珠海二中、斗门一中2025届高三第一次调研测试化学试卷含解析
- 中考数学高频考点专项练习:专题14 四边形综合训练 (3)及答案
- GB/T 36548-2024电化学储能电站接入电网测试规程
- DZ-T+0227-2010地质岩心钻探规程
- 常熟、张家港、昆山、太仓市2022-2023学年七年级下学期期中道德与法治试题
- 建筑劳务用工合同范本
- 2024年湖北省中考地理生物试卷(含答案)
- 眼科手术前扩瞳
- 北师大版二年级下册数学口算题大全带答案
- 广汽埃安高压快充技术应用介绍-2024-05-技术资料
- 《施工现场临时用电安全技术规范》jgj46-2005
- π型RC/LC滤波电路-电路
- MOOC 计算机组成与CPU设计实验-江苏大学 中国大学慕课答案
评论
0/150
提交评论