下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、高品质文档九年级下数学二次函数复习重点在今日和明天之间,有一段很长的时间;趁你还有精神的时候,学习迅速地办事。下面课件网我为您推荐九年级下数学二次函数复习重点。要点一求根公式二次函数表达式的右边通常为二次三项式。求根公式x是自变量,y是x的二次函数x1,x2=-b(b-4ac)/2a(即一元二次方程求根公式)(如右图)求根的方法还有因式分解法和配方法在平面直角坐标系中作出二次函数y=2x的平方的图像,可以看出,二次函数的图像是一条永无止境的抛物线。不同的二次函数图像如果所画图形准确无误,那么二次函数将是由一般式平移得到的。注意:草图要有1本身图像,旁边注明函数。2画出对称轴,并注明x=什么3与
2、x轴交点坐标,与y轴交点坐标,顶点坐标。抛物线的性质轴对称1.抛物线是轴对称图形。对称轴为直线x=-b/2a。对称轴与抛物线的交点为抛物线的顶点p。特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)顶点2.抛物线有一个顶点p,坐标为p(-b/2a,4ac-b;)/4a)当-b/2a=0时,p在y轴上;当=b;-4ac=0时,p在x轴上。开口3.二次项系数a决定抛物线的开口方向和大小。当a0时,抛物线向上开口;当a|a|越大,则抛物线的开口越小。决定对称轴位置的因素4.一次项系数b和二次项系数a共同决定对称轴的位置。当a与b同号时(即ab0),对称轴在y轴左;因为若对称轴在左边则对称轴小于
3、0,也就是-b/2a当a与b异号时(即ab0,所以b/2a要小于0,所以a、b要异号可简单记忆为左同右异,即当a与b同号时(即ab0),对称轴在y轴左;当a与b异号时(即ab事实上,b有其自身的几何意义:抛物线与y轴的交点处的该抛物线切线的函数解析式(一次函数)的斜率k的值。可通过对二次函数求导得到。决定抛物线与y轴交点的因素5.常数项c决定抛物线与y轴交点。抛物线与y轴交于(0,c)抛物线与x轴交点个数6.抛物线与x轴交点个数=b-4ac0时,抛物线与x轴有2个交点。=b-4ac=0时,抛物线与x轴有1个交点。=b-4ac当a0时,函数在x=-b/2a处取得最小值f(-b/2a)=4ac-b
4、2/4a;在x|xx|x-b/2a上是增函数;抛物线的开口向上;函数的值域是y|y4ac-b/4a相反不变当b=0时,抛物线的对称轴是y轴,这时,函数是偶函数,解析式变形为y=ax+c(a0)特殊值的形式7.特殊值的形式当x=1时y=a+b+c当x=-1时y=a-b+c当x=2时y=4a+2b+c当x=-2时y=4a-2b+c要点二8.定义域:r值域:(对应解析式,且只讨论a大于0的情况,a小于0的情况请读者自行推断)(4ac-b)/4a,正无穷);t,正无穷)奇偶性:当b=0时为偶函数,当b0时为非奇非偶函数。周期性:无解析式:y=ax+bx+c一般式a0a0,则抛物线开口朝上;a极值点:(
5、-b/2a,(4ac-b)/4a);=b-4ac,0,图象与x轴交于两点:(-b-/2a,0)和(-b+/2a,0);=0,图象与x轴交于一点:(-b/2a,0);y=a(x-h)+k顶点式此时,对应极值点为(h,k),其中h=-b/2a,k=(4ac-b)/4a;y=a(x-x1)(x-x2)交点式(双根式)(a0)对称轴x=(x1+x2)/2当a0且x(x1+x2)/2时,y随x的增大而增大,当a0且x(x1+x2)/2时y随x的增大而减小此时,x1、x2即为函数与x轴的两个交点,将x、y代入即可求出解析式(一般与一元二次方程连用)。交点式是y=a(x-x1)(x-x2)知道两个x轴交点和另一个点坐标设交点式。两交点x值就是相应x1x2值。用函数观点看一元二次方程1.如果抛物线与x轴有公共点,公共点的横坐标是,那么当时,函数的值是0,因此就是方程的一个根。2.二次函数的图象与x轴的位置关系有三种:没有公共点,有一个公共点,有两个公共点。这对应着一元二次方程根的三种情况:没有实
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 44624-2024热环境的人类工效学接触冷热表面时人体反应评价方法
- 工程招标设计阶段合同条件(第二部分)
- 专业体育教练合作协议范本
- 企业资产收购合同
- 事业单位引进急需紧缺专业人才暨2024年
- 2024年最高额反担保保证
- 政府采购协议供货公开招标文件2024年
- 农家乐活动合作合同
- 快递合作协议书样本
- 2024年如何制定具有法律效力的离婚协议
- 平舌音翘舌音词组训练
- 中国的世界文化遗产课件
- 设备文件-hpsp0630禾望逆变器说明书
- 心肺交互作用-
- 辽宁省沈阳市药品零售药店企业药房名单目录
- 校园文化建设方案(共60张PPT)
- 学校三年发展规划落实情况评估报告(通用3篇)
- 人教版二年级数学上册第六单元《表内乘法(二)》单元分析(学校集体备课)
- 两家公司关系证明公函
- 妇女保健科围绝经期保健门诊工作制度
- 胡援成《货币银行学》(第4版)笔记和课后习题(含考研真题)详解
评论
0/150
提交评论